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Abstract 

 Current estimates of standing tree merchantable volume within the Lake States 

frequently rely upon composite volume tables and/or approximation formulas.  The 

composite volume tables used, and the approximation formulas that are explicitly derived 

from them, were created over 50 years ago.  Within that time, standards of 

merchantability have changed, along with stand characteristics based on forest 

management activities.  Therefore, the need exists to develop more accurate estimations 

of volume to benefit the timber industry.  In this project, equations were developed to 

predict outside bark stump diameter (at 0.5 ft.) and outside bark diameters along the 

entire tree bole for several commercially important hardwood species in Wisconsin.  This 

was accomplished by taking paired height/diameter measures on standing trees using 

Laser Technology’s Criterion RD 1000 electronic dendrometer.  Profile equations were 

developed for ash (Fraxinus spp.), American basswood (Tilia americana L.), sugar maple 

(Acer saccharum Marsh.), and bigtooth aspen (Populus grandidentata Michx.).  The 

equation for sugar maple had an approximate R
2
 of 0.883 and a mean absolute error 

(MAE) of 0.8522 in.  The equation for ash had an approximate R
2
 of 0.934 and a MAE of 

0.9154 in.  For aspen, the equation had an adjusted R
2
 of 0.921 and a MAE of 0.7878.  

The equation for basswood had an approximate R
2
 of 0.942 and a MAE of 0.7850.  

Volumes were predicted from the selected equations for each sample tree.  Smalian’s 

formula was applied to consecutive section of each tree as measured with the Criterion 

RD 1000 and summed.  Predicted volumes obtained from this study were compared to 

volumes from commonly used composite tables.  Not surprisingly, predicted volumes 

from the two methods differed greatly when applied to the project dataset.   
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Introduction 

One use of the timber inventory process is to predict the amount and value of 

timber within a forested area.  Accurate and precise estimation of standing tree 

merchantable volume is an important and vital calculation derived from the timber 

inventory process.  Current estimations of standing tree merchantable volume within the 

Lake States frequently rely on composite volume tables and/or approximation formulas. 

The composite volume tables and corresponding taper tables used in the Lake 

States were developed by Gevorkiantz and Olsen (1955).  The volumes calculated from 

some of these tables apply to all species.  Ideally, a large sample set of data, taken across 

species and region, should have compensating errors that balance the inherent variation 

among species and within the region.  Due to forest parcelization and different 

management goals in small stands, the compensating factors will likely decrease, 

rendering the composite tables less accurate.  Also, the tables were developed during the 

1950’s when standards of merchantability were much different than those of the present.  

Fifty years of forest management may have changed stem form from that which was 

available when the tables were created (Ek and others 1986).  For their provided 

standards, the Lake States composite tables give a relatively accurate account of volume 

within a forest. 

Approximation formulas for stand volume, similar to the composite tables, are 

species independent.  Ek and Burk (1986) claim that since derivation of the formulas are 

based upon the Lake State’s composite volume tables, compensating error factors into its 

application and can potentially lead to a decrease in accuracy of volume estimates for 

small stands.  Currently, approximation formulas used in the Lake States only apply to 
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point sampling inventories with a 10-factor prism (Ek and Burk 1986).  With the 

increasing need of forest inventories upon smaller tracts of timber, fixed radius plots may 

be a more appropriate technique to use.  The approximation formulas do not apply to 

fixed radius plot inventories.   

Over the last 30 years, other regions of the country have begun using taper 

equations (also known as profile equations), instead of relying upon composite tables and 

approximation formulas (Fang and others 2000).  Tree form is known to vary among 

species and geographical regions (Avery and Burkhart 2002).  As a result, taper equations 

can be more accurate than other volume estimations because they are species specific, 

region specific, and volume can easily be derived from them.  Volume to any 

merchantable limit can be estimated because stem diameter is traced along the entire 

bole.  Wright’s (1923) goal of developing general taper tables for species per region to 

build local volume tables to meet the industry’s needs is closer than ever to being 

realized. 

Taper equations have been derived from the Lake States composite tables, but 

they are not species specific (Burk and Ek 1999).  Publicly available species specific 

Lake States taper equations are generally lacking, with only some published data on red 

pine (Pinus resinosa Ait.) compiled by Byrne and Reed (1986).  Furthermore, there are 

no publicly available region specific taper equations for use on timber species in 

Wisconsin within the National Volume Estimator Library (NVEL) (National Volume 

Estimator Library 2008). 

The Great Lakes Stem Profile Modeling Project, established by the Ontario 

Ministry of Natural Resources and the Ontario Forest Research Institute, is beginning to 
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create taper equations for the Lake States.  Most work is being conducted in Michigan 

and Ontario; however, due to the region specific nature of taper equations, equations for 

trees in Wisconsin should be developed.  

 Taper equations will be developed for four important timber species and/or 

species groups of Wisconsin.  Ash (Fraxinus spp.) will be examined in preparation of the 

impact of the emerald ash borer (Agrilus planipennis Fairmaire).  American basswood 

(Tilia americana L.), sugar maple (Acer saccharum Marsh.) and bigtooth aspen (Populus 

grandidentata Michx.), have different stem forms and are commercially important.  Note 

that American basswood is hereafter referred to as basswood and bigtooth aspen is 

hereafter referred to as aspen, if not specifically identified as such.  All species selected 

for use in this study encompass a large area of land within Wisconsin.  The sugar 

maple/beech/yellow birch forest type covers about 2.3 million acres of forested land, 

while the hard maple/basswood and aspen forest types cover 1.4 million acres and 2.8 

million acres, respectively (Miles 2007).  Four sets of developed equations should serve 

as an adequate starting point for taper equation development in Wisconsin until further 

studies of a similar nature can occur. 
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Literature Review 

General Background 

 The composite volume tables presented in USDA Technical Bulletin 1104 have 

been widely used since their development by Gevorkiantz and Olsen (1955).  The 

application of the composite tables is based upon standards of utilization common during 

the 1950’s (Ek and others 1986).  The tables were derived from a large sampling of trees 

throughout the Lake States and based upon the idea that form and taper were closely 

related to stand conditions.  Taper and form variation among Lake State species was a 

less important idea, because compensating error, which accounts for individual variation, 

was factored in the tables’ development (Burk and Ek 1999).  Utilization of trees to lower 

stump heights and smaller upper stem diameters has increased the need for more accurate 

volume estimations (Ek and others 1986).   

 Approximation formulas are derived explicitly from composite volume tables.  

Compensating error limitations imposed upon the Gevorkiantz and Olsen (1955) tables 

adhere firmly to any estimated value originated from an approximation formula.  Though 

the computed values are highly correlated, the need for accurate assessments of timber 

quantity is the driving force behind present timber inventories (Ek and Burk 1986). 

Taper 

Tree taper refers to the rate of decrease in diameter with increasing height up the 

stem (Newnham 1992). Taper can be affected by age, diameter, height, and locality 

(Wright 1923).  Taper equations are developed from paired height/diameter 
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measurements taken at various points along the entire tree bole (Westfall 2004).  There 

are two important reasons as to why study in this area remains a high priority.  First, there 

is no single theory that adequately explains variation in stem form for all trees, hence, no 

universally accepted taper equation.  Second, and a more critical factor, is the ability of 

taper equations to estimate both total and merchantable tree stem volumes from easily 

measured variables (Newnham 1988).  Taper equations are useful to predict volume to 

any merchantability limit and stem diameter at any height (Byrne and Reed 1986).  

Single trees are merchandized into multiple products, thus, knowing volumes of and 

diameters at specific heights is important (Jordan and others 2005).  With a greater 

proportion of each tree being harvested, as well as new manufacturing facilities being 

built, accurate estimations of volume are paramount to new merchantability standards 

within the industry (Newnham 1988).   

Stem Form 

There is a long history of the scientific community attempting to model tree form 

so that the entire stem profile, accounting for individual tree variability, could be 

described more accurately (Behre 1923).  Grosenbaugh (1966) stated that a tree stem may 

assume an infinite number of shapes, making the development of a simple, accurate 

equation difficult (Newnham 1988).  Though the bole of a tree does not approximate a 

singular geometric solid of revolution, it can be segmented into several, making possible 

the accurate calculation of volume content.  The lower bole is neiloid in shape, the 

middle portion is often in the shape of a paraboloid, and the upper portion is conical 

(Husch and others 1972).   
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Stem form is directly related to the same conditions that determine the size and 

distribution of the crown along the tree bole.  According to Larson (1963) stand density 

(Härdtl 1938, Stoate 1942), crown class (Vorreiter 1954), site quality (Schmeid 1918, 

Burger 1931), inheritance (Metzger 1896, 1908), and thinning/pruning (Flury 1903, 

Bickerstaff 1946) affect stem form along the entire tree.   

The lower bole section is the most variable segment among individual trees, due 

to many complex factors.  Though difficult to determine, butt swell should not be an 

eliminated factor when quantifying stem form (Behre 1923).  Larson (1963) also states 

that crown development (Gevorkiantz and Hosley 1929), inhibited root growth (Hartig 

1892), longer persistence in cambial activity (Mer 1892, Knight 1961), structural stability 

(Metzger 1893, Laitakari 1929), and shallowness of soil (Davis and Richards 1934) may 

all be contributing factors to the inconsistency of butt swell between trees.  Treated as an 

anomaly in the past, butt swell is now being utilized for wood products (Newnham 1988). 

 Taper is commonly used when describing stem form.  According to Wright 

(1923) the taper of a forest tree was described by Jonson (1910, 1911) to be the absolute 

form quotient, which is the ratio of diameter at breast height (DBH 4.5 ft. above ground) 

to diameter at half the height between breast height and the top of a tree.  A more 

commonly used form quotient in the United States today is the Girard Form Class, which 

is the ratio of stem diameter inside bark at the top of the first full log (17.3 ft.) to DBH 

outside bark (Avery and Burkhart 2002).  The measurement derived is a percentage 

(when the ratio is multiplied by 100) and can more easily determine accurate accounts of 

volume during timber inventories by accounting for taper.  Volume tables by form class 

can be regularly found in published booklets (Mesavage and Girard 1956).    
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Developing Taper Equations 

Early Taper Equations 

According to Kozak (1988) early taper equations derived by Höjer (1903), Jonson 

(1910, 1911), and Behre (1923) concentrated on the merchantable portion of the stem and 

were relatively simple mathematical formulas.  The approach used to describe diameter 

changes along the tree bole was a single function of different forms.  Höjer’s 1903 

equation, developed from measurements of Norway Spruce (Picea abies [L.] Karst.), to 

express the diameter of any tree at any point along its stem took the following form: 

𝑑

𝐷
= 𝐶 𝑙𝑜𝑔

𝑐+1

𝑐
                                                                                                        (1) 

where: d=diameter at distance “l” from the tip, 

 l=distance from top of tree, 

 D=diameter at breast height (4.5 feet), and 

 C,c=constants. 

While working with this formula, Jonson (1910, 1911) used it as a basis for developing 

taper tables and tables of cubic volume for trees of all sizes because of its close 

conformity to the actual taper of forest trees (Behre 1923).  However, Behre explains that 

Jonson found that with Scotch Pine (Pinus sylvestris L.), a “biological constant” would 

be needed in Höjer’s equation to better fit the tops of trees which led him to a new 

formula, the absolute form quotient formula: 

 𝑞 =
𝑑

𝐷
                                                                                                                     (2) 

where: q=absolute form quotient, 

d=the diameter at the middle of the stem above breast height, and 
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 all other terms as previously defined. 

The absolute form quotient gives a value for the taper class of the tree, most often 

referred to as a percentage, which will give the diameter at any point along a tree bole 

expressed as a ratio of the breast height diameter (Behre 1923).  The advantage of this 

expression of the variation in stem form is that classification of form class is made 

independent of height, being that the two form determining diameters are always in 

relation to one another (Claughton-Wallin and McVicker 1920).  This led Jonson to 

believe that all conifers and hardwoods taper with the same law and adhere to the same 

set of general taper curves, which is in accordance with the mechanical theory of tree 

from (Behre 1924). 

 Still without good fits in the upper stems of trees, Behre (1923) proceeded to 

present a new equation for stem curve which would be more consistent in its conformity 

to nature.  The equation has the form of the ordinary hyperbola when expressed in terms 

similar to Höjer’s equation:  

 
𝑑

𝐷
=

𝑙

𝑎+𝑏𝑙
                                                                                                                 (3) 

where: a,b=constants, 

 a+b=1, 

 and all other terms as previously defined. 

Bruce (1972) attempted to transform Behre’s hyperbolic equation, but still found poor fits 

at different points along the tree stem.  Hilt (1980) claims that this taper system does have 

the advantage of being simpler to apply by practicing foresters than newer, more complex 

taper systems (Wiant and Charlton 1984).  Höjer’s, Jonson’s, and Behre’s formulas were 

all found to be relatively accurate, except for within the region of butt swell (Husch and 
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others 1972).   

Before Höjer, Jonson, and Behre, several Europeans attempted to express tree 

form by a single equation of a known solid of revolution, but were unsuccessful due to 

the tree conforming to several different solids at different points along the bole (Behre 

1923).  Gray (1956) demonstrated that the main section of the tree bole could be a 

quadratic paraboloid, but that alone gave poor fits at the base (Newnham 1992).   

Other early notions of taper favored the thought that any two trees, regardless of 

species, having the same merchantable length, DBH, and diameter inside bark (DIB) at 

merchantable top, will have the same diameter at any paired points throughout their 

length (Lemieux 1936).  Wright (1923) was one of the first to report a need to develop 

separate taper tables for different species and for different size classes within the same 

species.   

An early and widely used polynomial taper model was developed by Kozak, 

Munro, and Smith in British Columbia for several tree species (Kozak and others 1969).  

The model is a simple parabolic function of the form: 

𝑑𝑖
2 𝐷𝑖

2 = 𝛽0 + 𝛽1 𝑖 𝐻𝑖  + 𝛽2 𝑖
2 𝐻𝑖

2  + 𝜀𝑖                                                        (4) 

where: Hi=total tree height, and  

 b0,b1,b2=regression coefficients to be estimated. 

This model form has been found to fit well for over 85% of a tree bole, but has performed 

poorly within the top and butt swell sections of a tree (Avery and Burkhart 2002).  

Kozak’s model can easily be integrated over the length of the tree bole to produce total or 

merchantable volume estimates. 

Two variable form approaches are currently being used today to describe tree 
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taper.  The first approach is a taper equation with a step function so that the bole is 

separated into segments by inflection points, while the second is a single continuous 

function for the entire bole (Fang and others 2000).  Also, fully compatible volume 

equations are being used to develop taper equations through iteration.  Recently, the use 

of nonlinear seemingly unrelated regression and mixed effects modeling has also aided 

the development of taper equations by increasing predictive precision. 

Segmented Polynomial Taper Equations  

Tree form is highly variable between species, as well as individuals.  Complex 

models may be needed in order to correctly describe tree form (Max and Burkhart 1976).  

Early polynomial systems of taper tried to develop equations based upon a single 

polynomial of various powers for red alder (Alnus rubra Bong.) in the Pacific Northwest 

and for several species groups in British Columbia (Bruce and others 1968, Kozak and 

others 1969).   

To establish a more complete model for tree form, a tree can be partitioned into 

separate models for each geometric solid it includes.  The geometric solids should then be 

fused together to finalize the model (Newnham 1992).  The segmented model must be 

continuous at inflection points to work properly (Fang and others 2000).  As one single 

segmented polynomial model, the whole may easily be analyzed by regression techniques 

(Max and Burkhart 1976).   

When using loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Englem.) 

from the coastal plains of eastern U.S., the segmented polynomial taper model appears to 

describe the stem profile quite accurately (Fang and others 2000).  Compared with 
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simpler taper-volume estimation systems, the segmented system has greater ability to 

predict volumes to a top diameter.  Also, the segmented system is more compatible, 

meaning that the taper equation developed can easily define an associated volume 

equation.  Volume calculated by integration of the model is usually equal to that of 

computed volume equation solutions.  According to Byrne and Reed (1986), when 

developing equations for red pine from the upper Midwest and loblolly pine from the 

coastal plains of eastern U.S., systems based on a segmented taper equation outperformed 

all other simpler systems, especially when estimating volume to a top diameter.     

Early models suggested the use of two mathematical functions; one describing the 

upper bole and the other describing the lower bole. The whole bole system of dual 

equations is set under the restrictions that diameter is equal to zero at the top of the bole, 

diameter equals that of diameter of inside bark at breast height, and that the two equations 

uniformly join at the inflection point.  This system, when evaluating 32 species groups in 

British Columbia, has a large bias when accounting for butt swell, but is nearly perfect 

when predicting diameters inside bark along the tree bole (Demaershalk and Kozak 

1977).  

 Max and Burkhart (1976) found that within a segmented polynomial taper 

equation for loblolly pine in the coastal plains of eastern U.S., a complex quadratic-linear 

(first degree polynomial)-quadratic model (each equation corresponding to a different 

tree bole segment) was sufficient to describe stem taper in plantations, while a quadratic-

quadratic-quadratic model was good for use in naturally occurring stands.  The difference 

between complex models being used for plantation and natural stands is due to the 

relatively shorter height of plantation trees (Max and Burkhart 1976).  In a study of 
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Appalachian hardwoods, comparing several taper models, the Max and Burkhart model 

was suggested as a possible model to be used because of its consistency and goodness of 

fit within the lower boles, though it is not a simple model to use (Martin 1981).  In 1985, 

Burkhart and Walton tried to increase the precision of the model by including crown ratio 

(length of live crown divided by total tree length) as a tree variable to the already used 

variables of DBH and height.  The lower join points were found to be around 10-15%, 

while the upper join points were found at 75-85%.  For broad ranges of crown ratio, it 

was found that inclusion of an extra variable was unwarranted, while for extremes in 

stand density, the variable’s inclusion could be justified (Burkhart and Walton 1985). 

Segmented polynomial models can be written as a series of grafted submodels.  

Gallant and Fuller (1973) provide a simple model written as: 

𝑦𝑖 = 𝑓 𝑥𝑖 + 𝑒𝑖                                                                                                       (5) 

where: yi=independent variable to be estimated, 

 xi=dependent variable, 

 𝑓 𝑥 =f1(x,β1),   a≤x≤α1 

 = f2(x,β2),    α1<x≤α2 

 . 

 . 

 . 

 =fr(x,βr),    αr-1<x≤b. 

αi=join points, and 

βi=parameter to be estimated. 

The submodels are grafted together at the join points by imposing restrictions on the 

model.  Restrictions are imposed so that f is continuous and has continuous first or higher 

order derivatives (Max and Burkhart 1976).   
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Using the Gallant and Fuller method (1973), Max and Burkhart (1976) developed 

the following model (6) to account for three segmented sections of a tree conforming to 

different geometric solids of revolution.  Each submodel herein is quadratic: 

𝑦𝑖 = 𝛽1 𝑥1 − 1 + 𝛽2 𝑥𝑖
2 − 1 + 𝛽3 𝛼1 − 𝑥1 

2𝐼1 + 𝛽4 𝛼2 − 𝑥1 
2𝐼2 + 𝜀𝑖            (6) 

where: y=d
2
/D

2
, 

d=diameter inside bark at any given height h, 

 h=height above the ground,        

D=diameter at breast height outside bark,        

H=total tree height from ground to tip,         

 x=h/H, 

I1=1, α1-xi≥ 0 

=0, α1-xi<0 

I2=1, α2-xi≥ 0 

=0, α1-xi<0, and 

β1, β2, β3,β4,α1,α2=parameters to be estimated. 

For a different type of segmented system, Liu (1980) used a complex model of 

cubic spline functions, applied with Reinsch’s (1976) algorithm (for the smoothing of 

isolated errors in measured data), to describe stem taper of yellow poplar (Liriodendron 

tulipifera L.) in eastern Kentucky.  A set of cubic polynomial segments with smooth 

joints, given by a set of coordinates corresponding to relative radii and positional heights, 

approximated intervals along the tree bole.  When evaluating 51 points along the tree 

bole, the cubic spline function estimated stem taper quite accurately.  A weakness of this 

system is the complicated mathematical procedures to determine taper. 
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Variable Exponent Form Taper Equations 

As a tree’s height position along the bole increases, stem form changes from base 

to leader.  The geometric solids of revolution assumed to be compatible with stem form 

do not abruptly change at the join points, but gradually assume the shape of a curve.  

Exponents used within other taper equation systems are subject to the constrained values 

of conventional geometric solids (1 for a cone, 2 for a quadratic paraboloid, 3 for a cubic 

paraboloid, and 2/3 for a neiloid) (Newnham 1988).  The variable exponent form taper 

equation employs one continuous function describing the entire tree bole from ground to 

tip with a changing exponent (Kozak 1988).   

The use of variable exponent form taper systems has both advantages, and 

disadvantages.  An advantage is that only one equation is necessary to determine the 

taper curve.  Regression is easily applied, since fewer parameters are used (Newnham 

1988).  Kozak (1988) found that when using a variable exponent in a continuous 

function, the shape of the stem, from ground to tip, is less biased than other systems when 

using several different species groups in British Columbia.  According to Martin (1981), 

in a study of Appalachian hardwoods, the Kozak 1988 variable exponent model was not 

as precise as the Max and Burkhart 1976 segmented model, but was just as accurate and 

simpler to use.  Muhairwe and others (1994) attempted to improve the precision of 

Kozak’s 1988 model by adding tree, stand, and site characteristics such as crown class, 

site class, breast height age, quadratic mean diameter, and crown ratio into the exponent 

of the equation for Douglas fir (Pseudotsuga menziesii [Mirb.] Franco), western redcedar 

(Thuja plicata Donn ex D. Don), quaking aspen (Populus tremuloides Michx.), and 

lodgepole pine (Pinus contorta Douglas ex Louden).  Except for crown ratio and 
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quadratic mean diameter for lodgepole pine, all other variables gave only marginal 

improvements indicating an unjustifiable cost in measuring for them.  The marginal 

increase in precision may be due to the fact that many of these variables are highly 

correlated with D/H measures, which are already accounted for in the exponent 

(Muhairwe and others 1994). 

Kozak’s (1988) variable exponent taper equation model is derived through several 

equations.  The function providing the general shape describing the change of diameter 

from ground to top is as follows: 

𝑌 = 𝑋𝑐                                                                                                                    (7) 

assuming that: Y=di/DI, 

  𝑋 = (1 − 𝑖 𝐻 )/(1 − 𝑝) 

where: di=diameter inside bark at hi, 

 hi=height from ground, 0≤hi≤H, 

 H=total height of the tree, 

 p=(HI/H)*100,  

HI=height of the inflection point from ground, and 

 DI=diameter inside bark at the inflection point. 

Demaerschalk and Kozak (1977) indicated that the inflection point, where the 

relationship between di/D and hi/H changes from neiloid to paraboloid, could be 

expressed as a percentage (p) of the total height of the tree.  They found the inflection 

point to range between 20 to 25% of total height from ground for all commercial tree 

species of British Columbia.  Perez and others (1990) found that when using Kozak’s 

1988 variable exponent model on oocarpa pine (Pinus oocarpa Shiede ex Schltdl.) in 
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central Honduras, different locations of the inflection point did not change the predictive 

ability of the model.   

By expressing the exponent, C, as a function of hi/H, as in: 

𝐶 = 1.0/(𝑖 𝐻 + 𝑘)                                                                                              (8) 

where: k=parameter to be estimated, and 

 all other terms as previously defined, 

and by varying k, a family of curves describing the shape of tree boles can be found.  

Obtaining a good fit between di/D and hi/H would, however, needs a more complicated 

form of the exponent.  Expressing the exponent as a multiple curvilinear regression 

yields:  

 𝐶 = 𝑏0 + 𝑏1𝑍 + 𝑏2𝑍
2 + 𝑏3 𝑍 + 𝑏4 ln(𝑍 + 0.001) + 𝑏5  𝑍 + 𝑏6𝑒

𝑍 + 𝑏7 𝐷 𝐻   

                                                                                                                                            (9) 

where: Z=hi/H, 

 D=diameter outside bark at breast height, 

 b0,b1,b2,b3,b4,b5,b6,b7=parameters to be estimated, and 

 all other terms as previously defined. 

An analysis of equation (9) for 33 species groups in British Columbia found the best 

subset of variables being: 

 𝐶 = 𝑏2𝑍
2 + 𝑏4 ln(𝑍 + 0.001) + 𝑏5  𝑍 + 𝑏6𝑒

𝑍 + 𝑏7 𝐷 𝐻                               (10) 

By substituting equation (10) into equation (7) and renumbering the coefficients, we get: 

𝑑𝑖 𝐷𝐼 = 𝑋𝑏1𝑍
2+𝑏2 ln 𝑍+0.001 +𝑏3 𝑍+𝑏4𝑒

𝑍+𝑏5(𝐷 𝐻)                                                  (11) 

From equation (11), diameter inside bark (DI) is not known but can be estimated from 

diameter outside bark at breast height (D).  From the data in Kozak’s 1988 study, it was 
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found that: 

𝐷𝐼 = 𝑎0𝐷
𝑎1𝑎2

𝐷                                                                                                                         (12) 

where: a0,a1,a2=parameters to be estimated, and 

 all other terms as previously defined, 

was the best at calculating DI.  By substituting equation (12) into equation (11) and 

rearranging the terms, we get: 

𝑑𝑖 = 𝑎0𝐷
𝑎1𝑎2

𝐷𝑋𝑏1𝑍
2+𝑏2 ln 𝑍+0.001 +𝑏3 𝑍+𝑏4𝑒

𝑍+𝑏5(𝐷 𝐻)                                         (13) 

where: all terms are as previously defined. 

Using logarithmic transformations, equation (13) can be linearized: 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑙𝑛 𝑎2 𝐷 + 𝑏1 𝑙𝑛 𝑋 𝑍
2 

+𝑏2 𝑙𝑛 𝑋 𝑙𝑛 𝑍 + 0.001 + 𝑏3 𝑙𝑛 𝑋  𝑍 

+𝑏4 𝑙𝑛(𝑋) 𝑒𝑍 + 𝑏5 𝑙𝑛 𝑋  𝐷 𝐻  + 𝜀𝑖                                 (14) 

where: 𝑋 = (1 − 𝑖 𝐻 )/(1 − 𝑝), 

all other terms as previously defined. 

The properties of this model are that di=0 when hi/H=1.0 and di=DI when hi/H=p. 

 There are two theoretical problems associated with Kozak’s 1988 variable 

exponent model.  Firstly, the model contains several polynomial terms and 

transformations of the same regressor variable, leading to several independent variables 

potentially having high multicollinearity.  Secondly, each tree measured has multiple 

observations, violating the independent error term assumption through autocorrelation 

(Kozak 1997).  Kozak addresses these problems with a new model of the following form: 

𝑑𝑖 = 𝑎0𝐷
𝑎1𝐻𝑎2𝑋

𝑖

𝑏1𝑋𝑖

1
10 +𝑏2𝑍𝑖

4+𝑏3arcsin  𝑄𝑖 +𝑏4[1 𝑒𝐷 𝐻 ] +𝑏5𝐷𝐵𝐻
𝑋𝑖

                              (15) 
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where: Qi=(1 − 𝑖 𝐻 ), 

 p=1.3/H, and 

 all other terms as previously defined. 

Using logarithmic transformations, equation (15) can be linearized: 

ln(𝑑𝑖) = ln(𝑎0) + 𝑎1 ln(𝐷) + 𝑎2 ln(𝐻) + 𝑏1 ln(𝑋)𝑋1/10 + 𝑏2 ln(𝑋)𝑍4 +

𝑏3 ln(𝑋)arcsin(𝑄) + 𝑏4 ln 𝑋  1 𝑒𝐷 𝐻   + 𝑏5 ln 𝑋 𝐷𝐵𝐻𝑋 + 𝜀𝑖                      (16) 

where: all terms are as previously defined. 

When studying the effects of multicollinearity and autocorrelation, Kozak’s new model 

was shown to predict values with a higher rate of precision than that of his previously 

published variable exponent equation (Kozak 1997). 

The variable exponent form taper equation is still, however, sensitive to errors 

when estimating diameter near ground level.  Since terms are chosen empirically, rather 

than geometrically, it is not possible to transpose the equation to determine height for a 

given diameter (Newnham 1988).  The most serious problem concerning the variable 

exponent taper equation is that merchantable volume for a given height/diameter pair can 

only be obtained by iteration (Kozak 1988).  A separate volume equation (Smalian, 

Huber, Newton, etc.) needs to be used between partitioned height/diameter pair sections, 

and when summed together, estimation of the volume to a merchantable top can be 

expressed. 

Compatible Volume Equations 

Variable top merchantable volume equations can be used to estimate volume to a 

variety of merchantable tops.  A merchantable volume equation implicitly defines an 
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associated taper function (Clutter 1980).  The taper equation derivation is based on the 

fact that volume estimates acquired by integration of taper equations should be equal to 

that of an existing volume equation.  The total volume, which is estimated from the 

summation of the sections whose volume is obtained using a taper equation, is identical 

to the volume yielded by a volume equation (Demaerschalk 1973).  Volume equations 

and their associated taper equations are then fully compatible, giving identical outcomes 

for total volume calculations (Demaerschalk 1972).  For practical application of 

merchantable volume equations, diameter at different heights along the bole or heights at 

given diameters should be known (Clutter 1980).  A problem with this system is the fact 

that an equation that is best for taper, may not be inherently best for volume 

(Demaerschalk 1973).  One must decide where precision in estimation needs to lie.  A 

compatible system of volume and taper is important to the timber industry where existing 

volume equations will continue to be used (Demaerschalk 1972).  

Nonlinear Seemingly Unrelated Regression 

Nonlinear equations, when combined into a set, having a contemporaneous cross-

equation error correlation, are known as a nonlinear seemingly unrelated regression 

system.  Though taper, total volume, and merchantable volume equations appear to be 

unrelated, the equations are related through the correlation in the errors.  Each equation 

within the set can use its own independent variables, have differently weighted functions, 

and share parameters, ensuring a sense of conformity.  When error and coefficient 

restrictions are specified, parameter estimations and predictions of the equations become 

dependable (Jordan and others 2005).  The parameter estimations are asymptotically 
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more efficient than the usually used least squares method (Zellner 1962). 

 Jordan and others (2005) used the following structural equations (17) for a system 

of nonlinear models.  When used concurrently, the application minimizes the error 

associated with diameter estimation. 

 y1=f1(X1,β1)+ε1                                                                                                       

 y2=f2(X2,β2)+ε2 

  

 yk=fk(Xk,βk)+εk                                                                                                                                                          (17)     

where: yi=is a vector containing the dependent variable from the ith equation, 

           Xi=is a matrix containing the independent variables from the ith equation, 

           Βi=is the parameter vector for the ith equation, and 

           εi=is the random error vector for the ith equation. 

Nonlinear Mixed Effect Modeling 

Recent studies included mixed effect modeling when developing taper equations.  

Mixed effect modeling allows for taper equations to include both fixed and random 

parameters.  Using repeated and random features, correlations between dependent 

variables and random effects among subjects can be approached concurrently (Zhang 

2002). When applied, mixed effect modeling increases flexibility and efficiency in 

estimation for regional conditions. New information about individuals can be 

incorporated into the response variable, allowing for an adjusted answer.  The time and 

cost necessary to employ widespread sampling can be reduced when taper equations are 

based on the adjustment of parameters.  When applied to Max and Burkhart’s segmented 
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polynomial system (1976), mixed effect modeling increased the fit of their taper 

equation, especially in the lower bole section (Trincado and Burkhart 2006).  When 

covariance structures are heterogeneous and/or correlations exist among stochastic error 

terms, mixed effect modeling yields an unbiased and consistent estimation of parameters 

(Zhang 2002).  

 Trincado and Burkhart (2006) used a nonlinear mixed effects model written in the 

form of a two stage model.  Model (6) accounts for the variation within the tree, while 

model (7) describes the between tree variations.  Within tree variation model is as 

follows: 

 𝑅𝑖 𝛽𝑖 , 𝜉 = 𝜎2𝐺𝑖
1

2  𝛽𝑖 ,𝜃 𝛤𝑖 𝜌 𝐺𝑖
1

2  𝛽𝑖 ,𝜃                                                         (18)                                                     

where:  𝑅𝑖 𝛽𝑖 , 𝜉 =is a variance-covariance structure, 

             𝐺𝑖
1

2  𝛽𝑖 ,𝜃 =is an (ni x ni) diagonal matrix characterizing interindividual 

                                   variance, 

             𝛤𝑖 𝜌 = is an (ni x ni) matrix that describes the correlation pattern within the 

                         measurements of the ith individual,  

              𝜉=represents a vector of unknown parameters 𝜎, 𝜃′ ,𝜌′ Τ , and 

              Βi=parameter to be estimated. 

This assumes that the within tree variance is heterogeneous and that residuals are 

uncorrelated. 

 Between tree variation is modeled as follows: 

 𝛽𝑖 = Α𝑖𝛽 + B𝑖b𝑖        b𝑖~N 0, D                                                                          (19)                                             

where: Ai=is a design matrix of size (r x p) for fixed effects, 
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           Bi=is a design matrix of size (r x q) for the random effects, 

           𝛽=a vector of fixed population parameters of size (p x 1), and 

           Bi=a vector of random effects of size (q x 1) associated with the ith individual and  

                 assumed to be multivariate normally distributed with E(bi)=0 and variance- 

                 covariance structure D. 

Summary 

 In summary, many forms of taper equations have been used to predict outside 

bark diameters along an entire tree bole.  Some of these equations were used in this study, 

while others were not.  The reasons as to why certain model forms were not chosen for 

investigation will be addressed in the discussion chapter of this thesis. 
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Objectives 

The objectives of this study are to develop species specific outside-bark profile 

equations, from standing trees, for several commercially important timber species in 

Wisconsin.  Equations will be developed to estimate outside bark diameter at the stump 

and outside bark diameter for any height at or above 4.5 feet above ground.  The specific 

species being used are sugar maple (Acer saccharum Marsh.), American basswood (Tilia 

americana L.), and bigtooth aspen (Populus grandidentata Michx.).  Additionally, ash 

(Fraxinus spp.) will be examined.   
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Methods 

Data Collection 

 Throughout 2008, six northern hardwood stands were visited in north central 

Wisconsin for data collection.  Six study sites were included in this study; two sites at 

Treehaven, owned and operated by the University of Wisconsin-Stevens Point College of 

Natural Resources, near Tomahawk, WI, one site provided by, and located in, Lincoln 

County, one site provided by Kretz Lumber Company Inc. near Crandon, WI, one site 

provided by Plum Creek Timber Company Inc. near Spirit, WI, and the final site at the 

The Highgrounds Veterans Memorial Park, near Nellsville, WI (Figure 1).  It was within 

the goals of the research project to obtain a sample size of roughly 100 trees per species.  

Since this project is a part of a larger project involved with measuring felled trees, sites 

were somewhat limited to areas where data for all parts of the project could be collected.  

The inclusion of certain merchantable sized trees was based upon harvesting activities.  

Therefore, this is an observational study, as opposed to an experimental one.  A variety of 

site conditions and a range of tree diameters and heights were sought.  This broad range 

of characteristics should increase the applicability of developed taper equations.   

 The tools used during the extent of the field work for this project include calipers, 

vertex hypsometers, Spiegel Relaskops, and Laser Technology Inc. Criterion RD 1000 

dendrometers (hereafter referred to as the Criterion RD 1000).  Calipers were used for the 

lower bole diameter measurements of standing trees.  The Haglof Vertex III Hypsometer 

was used to assist with distance measurements when using the Criterion RD 1000.  The 

Spiegel Relaskop was used to estimate the total heights of trees, as well as height to a 
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Key 

1. West end of Treehaven Field Station, off of County Road H 

2. North end of Treehaven Field Station, off of Pickerel Road 

3. Lincoln County, WI forest, near County Road A 

4. Kretz Lumber Company Inc. site, off Rolling Stone Road, near Mole Lake, WI 

5. The Highgrounds Veterans Memorial Park, Nellsville, WI 

6. Plum Creek Timber Company Inc. site, off of Highway 86, near Spirit, WI 

 

Figure 1 County map of Wisconsin illustrating study site locations. 
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10 in. and 3 in. top.  The Criterion RD 1000 is a forestry tool specifically created for 

timber inventories.  Measurements obtained with the Criterion RD 1000 were upper stem 

outside bark diameters and heights, both of which are slope corrected.  When measuring 

standing trees, two Criterion RD 1000s were used to provide paired upper stem 

diameter/height measures perpendicular to one another, which were then averaged.  The 

measuring device provides heights, based on distance away and the angle of tilt, and 

diameters, based on a scope that is able to be toggled to meet the outer edges of the tree 

bole.  The units were placed between 20 and 40 feet away, depending on the height of the 

tree and visibility to the upper diameters.    

Several attributes were recorded for each tree included within the study: 

1. Location. 

2. Species. 

3. Diameter at breast height, using calipers and the Criterion RD 1000. 

4. Outside-bark diameter every foot along the bole from 0.5 feet aboveground to 4.5 

feet above ground, using calipers and the Criterion RD 1000. 

5. Outside-bark diameter at least every 3 feet above DBH above ground and at any 

point along the bole where a noticeable change in diameter occurs, measured with 

the Criterion RD 1000. 

6. Height to a 10 inch top, 3 inch top, and total height, using the Spiegel Relaskop 

and the Criterion RD 1000. 

All measured diameters, regardless of the tool used to measure, were taken twice at 

locations perpendicular to one another.  
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Taper Equation Development 

 Taper equations will be developed for each species such that estimation of volume 

to a merchantable height can be derived from a tree’s DBH measure and an estimate of 

merchantable height.  The two attributes recorded, commonly taken during a timber 

inventory, will easily become applicable to the developed equations.  Equations will be 

developed for: 

1. Outside bark diameter at the stump, and                                                                

2. Outside bark diameter for any height along the tree bole.             

Both equations will be used when determining volume for each sample tree.  Volume will 

be determined from using only equations developed for outside bark diameter for any 

height along the tree bole.  Also, volume will be predicted from the summation of 

equations developed for outside bark diameter at the stump, predicting bole volume from 

0.5 feet up to DBH, and the equations developed for outside bark diameter at any height 

along the tree bole, predicting bole volume from DBH to the top of the tree.  Both sets of 

volume predictions will be compared to check for accuracy, and whether or not the use of 

developed outside bark diameter at stump equations are warranted.  Previously published 

model forms of taper equations will be used for prediction of outside bark diameter for 

any height along the tree bole, which will then be compared to assist in development of 

equations for four Wisconsin timber species.   

Analysis 

 After data collection was completed, data were analyzed using Microsoft Excel® 

and SAS® computer programs.  Several techniques were employed to parameterize the 
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profile equations.  While nonlinear seemingly unrelated regression, nonlinear mixed 

effect modeling, polynomial regression, and segmented regression
 
have been used in 

prior development of taper equations, two variable form exponent approaches and one 

polynomial model were used in this study.  The model forms not selected for use in this 

study will be discussed in the discussion section of this thesis.  Through the use of the 

SAS® statistical software package, the method with the least bias and smallest error was 

suggested for use as the best taper equation.  Accuracy of developed profile equations 

was assessed by regression diagnostics where appropriate. 

Outside Bark Stump Equation 

 An equation was developed to estimate stump diameter (at 0.5 feet) for four tree 

species in Wisconsin to aid forestry personnel and landowners in volume estimation of a 

tree’s region of buttswell.  Two models were developed for investigation of stump 

diameter, which were then fit to the dataset for each tree species to check for significant 

parameters, normal distribution, and to apply regression diagnostics.  The two model 

forms developed to examine stump diameter include: 

𝑆𝑡𝑢𝑚𝑝 𝐷𝑂𝐵𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝜀𝑖                                                                                        (20) 

𝑆𝑡𝑢𝑚𝑝 𝐷𝑂𝐵𝑖 = 𝛽0 + 𝛽1 𝐷𝑖
2𝐻𝑖 + 𝜀𝑖                                                                                (21) 

where:  Stump DOBi=outside bark diameter (inches) at 0.5 feet, 

 εi=error term, and 

all other terms as previously defined. 

Least squares regression was used to fit the developed models and slopes were deemed 

significantly different from zero if the p-value of the resultant significance tests were 



 

- 29 - 

 

<0.05.  The most appropriate model was selected based on significant slopes, the highest 

adjusted R
2
 value, and lowest MAE.  Iteration, through the use of Smalian’s formula on 

the lower bole section of the tree, from 0.5 feet up to the DBH, was used to determine 

volume. 

Outside Bark Profile Equation 

 An equation was developed from previously published model forms to estimate 

diameter at given heights along the length of a tree bole for four tree species in Wisconsin 

as to aid forest managers, industry personnel, and landowners in volume estimation to 

differing merchantable tops.  As mentioned in the literature review, there are many 

different types of model forms to choose from to estimate diameter at different heights 

along a tree bole.  Three models chosen for investigation for each tree species were fit to 

the dataset to check for significant parameters, to find a pattern of normal distribution, 

and to apply regression diagnostics.  The three model forms chosen to examine include: 

  𝑑2 𝐷2 = 𝑏0 + 𝑏1  𝐻  + 𝑏2(2 𝐻2 )                                                    (4) 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑙𝑛 𝑎2 𝐷 + 𝑏1 𝑙𝑛 𝑋 𝑍
2 

 +𝑏2 𝑙𝑛 𝑋 𝑙𝑛 𝑍 + 0.001 + 𝑏3 𝑙𝑛 𝑋  𝑍 

+𝑏4 𝑙𝑛(𝑋) 𝑒𝑍 + 𝑏5 𝑙𝑛 𝑋 (𝐷 𝐻 )                                                          (14) 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑎2 𝑙𝑛 𝐻 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10  

 +𝑏2 𝑙𝑛 𝑋 𝑍
4 + 𝑏3 𝑙𝑛 𝑋 𝑎𝑟𝑐𝑠𝑖𝑛 𝑄  

+𝑏4 𝑙𝑛 𝑋 (1 𝑒𝐷 𝐻  ) + 𝑏5 𝑙𝑛 𝑋 𝐷𝐵𝐻
𝑋                                                (16) 

Terms within the models not significantly different from zero were excluded from the 

model and further investigation commenced without said terms.  Least squares regression 
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was used to fit the chosen models and parameter estimates were deemed insignificantly 

different from zero if the p-value of the resultant significance tests were ≥0.05.  Since 

multiple observations were taken upon the same experimental unit, high degrees of serial 

autocorrelation could be expected.  Mixed linear models of equations (4, 14, and 16) 

were used to vary the covariance structure of the matrices (Quinn and Keough 2002).  

First-order autoregressive and compound symmetry covariance structures, along with the 

standard identity matrix covariance structure, were applied to find the Akaike 

Information Criterion (AIC) and -2 log likelihoods.  Models with the lowest AIC and -2 

log likelihood have a lesser degree of serial autocorrelation and weigh more heavily in 

final model selection.  Once appropriate models were identified, iteration, through the use 

of Smalian’s formula on individual tree segments, was used to assess accuracy in volume 

determination. 

Regression Diagnostics 

After the several models were chosen for use in development of the taper 

equations, many diagnostics were observed for each model to determine the equation 

with the most accurate estimation of taper.  An evaluation of selected models included fit 

statistics calculated from ordinary residuals yi-𝑦 i, where yi and 𝑦 i are the observed and 

predicted values of the dependent variable, respectively.  Regression analysis will lead to 

a model that most highly predicts the dependent variable.  Diagnostics specifically used 

for this research include Shapiro-Wilk’s test of normality of errors, approximate R
2
, mean 

absolute error, PRESS residual and the PRESS statistic, DFFITS, variance inflation 

factor, and the Durbin-Watson test for positive autocorrelation (Myers 1990).  
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 To test for normal distribution of the error term, the Shapiro-Wilk test was used in 

the model selection process (Quinn and Keough 2002).  This test corresponds to the 

following hypothesis when the residual error terms are checked: 

 H0: Errors are normal 

 H1: Errors are not normal 

 α=0.05 

The Shapiro-Wilk test examines the residual error for data that are not normally 

distributed in the case of this study.  Therefore, the null hypothesis should not be rejected 

for data if normality is desired.  Models that suppose the alternative hypothesis are 

discarded or transformed to meet the assumption.  When the Shapiro-Wilk test was not 

available in SAS® procedures, the Kolmogorov-Smirnov test will be used to check for 

normality. 

The coefficient of determination (R
2
), often used to measure the fit of the 

regression line, represents the variability of the Y variable that can be predicted by the 

independent variables (Myers 1990).  The R
2
 is a value that lies between 0 and 1, and is 

usually expressed as a percentage (0-100%) of the variation in the response data that is 

explained by the model.  A high degree of predictive ability of the independent variable is 

achieved the closer R
2
 approaches 1 (or 100%).  In this study, some form of diameter at a 

given height above ground was the dependent variable while many other observed 

measurements were the independent variables.  When simple linear regression was used 

in developing a taper equation, the following model was used to calculate R
2
: 

𝑅2 =
𝑆𝑆𝑅𝑒𝑔

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
∗ 100%                                                                                            (22) 

where: SSReg=Sum of squares regression-sum of squared differences between the 
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estimated regression line and the mean of the Y variable, and 

SSTotal=Sum of squares total-sum of squared differences between each of the 

observations and the mean of the Y variable.  

For equations with transformed data, each R
2
 value was calculated by hand, to get 

transformed data back into original units, by taking the difference between SSTotal and 

SSError, predicting the SSReg.  Because of this, all coefficients of determination for 

equations 14 and 16 are approximate R
2
 values.    

For equations developed using multiple linear regression, adjusted R
2
 was used 

instead of R
2
.  With additional independent variables (more parameters) added to a 

model, R
2
 will remain constant or increase regardless of the improved/decreased fit of the 

model.  To take account of the predictive ability of a model with additional parameters 

and compare multiple linear regression models, adjusted R
2
 should be used.  The adjusted 

R
2
 can be calculated using the following equation: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −  
𝑛−1

𝑛−𝑝
  

𝑆𝑆𝐸

𝑆𝑆𝑇
                                                                          (23) 

where: Adjusted R
2
=percent variation of Y explained by multiple X’s, 

n=number of observations, 

p=number of parameters, 

SSE=Sum of squared error-sum of squared differences between the actual and 

estimated dependent variable values, and 

all other terms as previously defined. 

As additional parameters are added to a model, the value of the adjusted R
2
 will decrease 

unless the additional parameters add to the usefulness of the model by decreasing the 

SSE.  This measure takes into account the true effect of any new independent variables 
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introduced to a model. 

Another statistic used for comparing models is mean absolute error (MAE), which 

is determined from the regression residuals.  MAE is calculated from the following 

equation: 

𝑀𝐴𝐸 =
  𝑦𝑖−𝑦 𝑖 

𝑛
                                                                                                     (24) 

where: 𝑦𝑖=actual value of observation i, 

           𝑦 𝑖=estimated value of observation i, 

           n=number of observations, and 

           i=1,2,3,..n. 

The calculated mean of each residual’s absolute value leads to a calculation of average 

deviation from the regression.  Absolute value is used so that errors on the positive and 

negative side do not cancel each other out when averaging them together.  When several 

models are compared in this manner, the equation with the lowest MAE is generally 

chosen because this test shows that actual values of observations are closer, on average, 

to the estimated regression line.  

Predicted sum of squares (PRESS) was used as a form of validation and to 

determine the influence of individual observations when comparing models (Myers 

1990).  In the dataset, each observation is individually withheld, using the remaining n-1 

observations to estimate coefficients of each regression model.  The deleted response is 

estimated n times, one for each observation, so as to yield a prediction error or PRESS 

residual.  A PRESS residual is calculated by: 

𝑃𝑅𝐸𝑆𝑆𝑖 = 𝑌𝑖 − 𝑌 𝑖 ,−𝑖                                                                                              (25) 
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where: PRESSi=PRESS residual for observation i, 

Yi=actual value of observation i, 

𝑌 i,-i=estimated value of observation i from a regression equation that was 

constructed without using that observation, and  

i=1, 2, 3…n. 

The value given is a measure of how much influence each observation has on the 

calculated regression.  If the absolute value of the PRESS residual is significantly larger 

than the ordinary residual for a given observation, then that observation may be highly 

influential in the construction of the regression. 

 A PRESS statistic can be calculated from all (n) PRESS residuals using the 

following equation: 

 𝑃𝑅𝐸𝑆𝑆 =  (𝑌𝑖
𝑛
𝑖=1 − 𝑌 𝑖 ,−𝑖)                                                                                   (26) 

where: All terms are as previously defined. 

A large PRESS statistic may occur if one or a few PRESS residual values are large.  

When comparing models, the one with the lowest PRESS statistic will be chosen. 

To determine the influence each observation i had upon the predicted value of 𝑦 i, 

the diagnostic DFFITS was used (Myers 1990).  The value of DFFITS for each 

observation i is the number of estimated standard errors the fitted value of 𝑌 𝑖  changes 

without said i
th

 observation.  This diagnostic can check for outliers within the dataset.  

DIFFITS can be calculated by the following equation: 

𝐷𝐹𝐹𝐼𝑇𝑆𝑖 =
𝑦 𝑖−𝑦 𝑖,−𝑖

𝑠−𝑖 𝑖𝑖
                                                                                               (27) 

where: DFFITSi=Difference in fits for observation i, 
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 s-i=Residual standard deviation calculated without observation i, 

 hii=i
th

 diagonal of the hat matrix, and  

 all other terms as previously defined. 

An absolute value of 2 for a DFFITS calculation should be closely examined, as it may 

possibly be an outlier within the dataset (Myers 1990).   

 Variance inflation factor (VIF) was the diagnostic used to determine the level of 

collinearity among each independent variable.  Collinearity exists when independent 

variables are correlated, leading to regression coefficients that are highly dependent on 

the dataset generating them and poor predictive ability of the model (Myers 1990).  

Therefore, slight changes in the dataset can drastically change the estimated regression 

coefficients.  VIF can be calculated by: 

 𝑉𝐼𝐹 =
1

1−𝑅𝑖
2                                                                                                           (28) 

where: VIF=variance inflation factor for the i
th

 regressor, and 

𝑅𝑖
2=the coefficient of multiple determination of the regression produced 

 by regressing the dependent variable against the other regressor variables. 

The value calculated is the increase over the ideal case where regressor variables are 

orthogonal.  A VIF value greater than ten would suggest high collinearity and should be 

examined closely (Quinn and Keough 2002).  This diagnostic was weighed heavily when 

choosing an appropriate taper model.  

 With repeated measures upon each sample tree contained within the study, 

autocorrelation might exist, impacting the value of parameter estimates.  The Durbin-

Watson test for positive autocorrelation was used to detect autocorrelation for each 
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proposed model.   

 Lack of fit tests were planned to check the adequacy of the models (Myers 1990).  

This test would have been possible if there were several instances of repeated 

measurements within a species at each height above the ground with matching 

independent variables of total height and DBH.  This test could not be done to assess 

observational and experimental errors, as such instances did not occur. 

 Partitioning a dataset into two series of data, a fitting sample and a validation 

sample, known as data splitting, was a common practice used during regression analysis 

(Myers 1990).  The fitting sample data is used with models to estimate regression 

coefficients, which are then used to estimate samples within the validation dataset.  The 

problem with such a procedure revolves around the fact that with a splitting of data, 

fewer samples are used during model development and construction.  Kozak and Kozak 

(2003) concluded that the data splitting procedure does not provide any additional 

information about model building compared with the respective statistics derived 

explicitly from the entire dataset.  Myers (1990) states that the PRESS statistic can be 

used in lieu of data splitting, where it is similar to the procedure but uses the entire 

dataset.  With this information, data splitting was not used for validation purposes during 

this project. 

Volume Determination 

 To determine the adequacy of volume determination for our proposed models, 

Smalian’s formula was used to compute cubic volume (feet) from observed and estimated 

variables.  Avery and Burkhart (2002) present the formula as: 
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 𝐶𝑢𝑏𝑖𝑐 𝑓𝑜𝑜𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 =
(𝐵+𝑏)

2
𝐿                                                                                     

(29) 

where: B=cross sectional area (sq. ft.) at large end of log (0.005454*d
2
), 

 b=cross sectional area (sq. ft.) at small end of log (0.005454*d
2
), and 

 L=log length (ft.). 

Though not as accurate as Huber’s or Newton’s formulas on more traditional applications 

to 16 foot logs, Smalian’s formula is easy to apply using the data previously collected and 

will be fairly accurate giving the short stem segments used herein.  Prior measurements 

(Y) were taken at standard increments (X) along the tree bole, yielding cross sectional 

areas at large and small ends of various bole sections.  These sections ranged in size from 

0.5 ft. to 4 ft. in length, thereby increasing the accuracy of Smalian’s formula to that of 

Huber’s or Newton’s formula.   By summing all sections for a single sample tree, an 

estimated volume is achieved. 

  𝑐𝑢𝑏𝑖𝑐 𝑓𝑜𝑜𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 =  (
𝐵+𝑏

2
𝐿)𝑛

𝑖=1                                                                    (30) 

where: n=number of segments in the tree stem, and 

all other terms are as previously defined. 

This method is done for every sample tree with observed (yi) diameters from data 

collection and estimated ( 𝑦𝑖 ) diameters from taper models.  Lower bole volumes (from 

stump to DBH) will be estimated with the outside bark stump equation and will be added 

to volume estimates (DBH to finite top) from selected taper models.  These will be 

compared to volume estimates using only the taper models.   

 To compare model accuracy, mean absolute error of estimated total volume to 
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observed total volume, for all trees within a species, will be used.  The model exhibiting 

the lowest MAE will be weighed heavily in choosing a sufficient model. 
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Results  

Data Summarization 

 The target sample size was to obtain 100 individual trees per species (400 total) 

during 2008.  However, due to logistical difficulties, only 312 trees could be measured 

and analyzed in this study.  All 312 trees were used in testing and fitting of regression 

equations.  Table 1 summarizes the tree level attributes by species.  The attributes include 

sample size, average DBH (in.), average total tree height (ft), average height to a ten inch 

diameter top (ft), average height to a three inch diameter top (ft), and average Girard 

form class.  Standard deviations of each attribute are included in the table.  The 

distribution of trees per species in the regression dataset based on 1” DBH class and 10-ft 

total height class are shown in Tables 2-5. 

Outside Bark Stump Equation 

 Two model forms were developed to examined to obtain the outside bark stump 

diameter of four tree species in Wisconsin.  Residual error terms of the regression fits 

were checked for non-normal distribution using the Shapiro-Wilk test for normality.  

Both models were found to reject the null hypothesis, meaning that residual error terms 

were not normally distributed.  However, the residual error terms did assume a bell 

shaped curve that was highly peaked in the middle.  This will be further addressed in the 

discussion section of this thesis. 

 For each developed model examined, all non-intercept parameter estimates 

needed to be significantly different from zero at the α=0.05 level.  For both models and  
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Table 1 Mean and standard deviation (in parentheses) of tree attributes by species 

Species n DBH THT HT10  HT3  FC 

Sugar maple 80   9.5(3.02) 66.6(12.2) 15.6(17.0) 52.4(10.8) 86(8) 

Ash 84 11.7(3.83) 80.4(13.9) 24.3(19.6) 60.4(15.4) 85(7) 

Aspen 82 10.4(2.75) 75.3  (9.3) 17.5(15.3) 59.1  (9.2) 89(4) 

Basswood 66 12.9(3.19) 80.7(11.7) 30.2(17.7) 68.5(11.2) 88(4) 

n=Sample size 

DBH=Diameter (in.) at breast height 

THT=Total tree height (ft.) 

HT10=Height (ft.) of tree to a 10 inch diameter top  

HT3=Height (ft.) of tree to a 3 inch diameter top  

FC= Girard form class (%) 
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Table 2 Distribution of sugar maple in the dataset by DBH and total height class 

Total height                                             1 inch DBH class                                                                                                                    

by 10-ft class 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total  

  40  3              3  

 50 6 2 4 1            13 

 60  5 5 4 4           18 

 70  4 8 2 4 6 1 2  1 1     29 

 80  1 2  1  4  1    1   10 

 90    1   1   3  1   1 7 

 Total 6 15 19 8 9 6 6 2 1 4 1 1 1 0 1 80 
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Table 3 Distribution of ash in the dataset by DBH and total height class 

Total height                                             1 inch DBH class                                                                                                                    

by 10-ft class 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21    Total  

 50 1 1                2 

 60 2 1 3 1 3 1            11 

 70  2 2 5 1 3 2   1        16 

 80    1 4 4 5 5 3 1 2 1 1     27 

 90     1 1  1 2 2 3 1 1  1   13 

 100        2 1  3 2 2 1 2   13 

 110              1   1 2 

 Total 3 4 5 7 9 9 7 8 6 4 8 4 4 2 3 0 1 84 
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Table 4 Distribution of aspen in the dataset by DBH and total height class 

Total height                                             1 inch DBH class                                                                                                                    

by 10-ft class 6 7 8 9 10 11 12 13 14 15 16 17 Total 

 50    1         1 

 60 1 3 4 3    1     12 

 70 2 5 7 6 2 1 2 2 1    28 

 80    4 6 7 5 6 2 1 1 1 33 

 90    1 1 1    1 2  6 

 100         1 1   2 

 Total 3 8 11 15 9 9 7 9 4 3 3 1 82 
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Table 5 Distribution of basswood in the dataset by DBH and total height class 

Total height                                             1 inch DBH class                                                                                                                    

by 10-ft class 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total  

 60 2  2 1   1 1       7 

 70   2 3  3 1 4  1     14 

 80    1 3 4 1 5 3 1  4 1 1 24 

 90     2 1 1 2 2  2 1 1 1 13 

 100        1 1 2 3   1 8 

 Total 2 0 4 5 5 8 4 13 6 4 5 5 2 3 66  
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all species, parameter estimates were significant.  Regression diagnostics including R
2
 

and MAE for all species for both models are included in Table 6.  Higher R
2
 and lower 

MAE values for all species were seen for equation (20) compared to equation (21).  

Therefore, equation (21) was discarded and equation (20) was selected for use as the 

outside bark stump equation.  Regression coefficients for each species using equation 

(20) are included in Table 7.  

Outside Bark Profile Equation 

 Three previously published model forms were examined to obtain profile 

equations for four tree species in Wisconsin.  Residual error terms of the regression fits 

were checked for non-normal distribution using either the Shapiro-Wilk test for normality 

or the Kolmogorov-Smirnov test for normality.  All models were found to reject the null 

hypothesis, meaning that residual error terms of the regression fits were not normally 

distributed.  However, the residual error terms did assume a bell shaped curve, being 

symmetrical and non-skewed.      

 For each model form examined, all non-intercept parameter estimates needed to 

be significantly different from zero at the α=0.05 level.  For the fit of equation (4), all 

parameter estimates for all species were significantly different from zero.  Except for 

basswood, the fit of equation (14) for all other species had one term that was not 

significantly different from zero.  Since insignificant parameters should not be included, a 

new version of equation (14) was developed without said insignificant terms: 
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Table 6 Fit statistics for stump equation models (20, 21) by species and equation  

Species R
2
 MAE (in.)  

Sugar maple 

Equation (20) 0.7841 1.1586  

Equation (21) 0.7679 1.1704 

 

Ash 

Equation (20) 0.9480 0.8960 

Equation (21) 0.8669 1.4726 

 

Aspen 

Equation (20) 0.9440 0.7224 

Equation (21) 0.9005 0.9757 

 

Basswood 

Equation (20) 0.8646 1.5270 

Equation (21) 0.7940 1.7779 
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Table 7 Regression coefficients for equation (20) by species  

Species Parameter Estimate Standard Error Pr>|t| 

Sugar maple b0 -1.2617 0.8968 0.1645 

 b1 1.4248 0.0950 <0.0001 

 

Ash b0 -1.0370 0.5223 0.0522 

 b1 1.4659 0.0455 <0.0001 

 

Aspen b0 -1.6779 0.0162 0.0004 

 b1 1.4282 0.0428 <0.0001 

 

Basswood b0 -1.2513 0.0366 0.2720 

 b1 1.5070 0.0861 <0.0001 
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𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑏1 𝑙𝑛 𝑋 𝑍
2 

 +𝑏2 𝑙𝑛 𝑋 𝑙𝑛 𝑍 + 0.001 + 𝑏3 𝑙𝑛 𝑋  𝑍 

+𝑏4 𝑙𝑛(𝑋) 𝑒𝑍 + 𝑏5 𝑙𝑛 𝑋 (𝐷 𝐻 )                                        (31) 

where: all terms as previously defined. 

All terms for equation (31), for all species other than basswood, were found to be 

significantly different from zero.  For equation (16), all species had at least one parameter 

that was not significantly different from zero.  Several new versions of equation 16 were 

developed for each species to contain only significant parameters.  For sugar maple: 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑎2 𝑙𝑛 𝐻 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10 

 +𝑏2 𝑙𝑛 𝑋 𝑍
4 + 𝑏3 𝑙𝑛 𝑋 𝑎𝑟𝑐𝑠𝑖𝑛 𝑄 + 𝑏5 𝑙𝑛 𝑋 𝐷𝐵𝐻

𝑋         (32) 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑎2 𝑙𝑛 𝐻 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10 

 +𝑏2 𝑙𝑛 𝑋 𝑍
4 + 𝑏3 𝑙𝑛 𝑋 𝑎𝑟𝑐𝑠𝑖𝑛 𝑄 + 𝑏4 𝑙𝑛 𝑋 (1 𝑒𝐷 𝐻  )   (33) 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑎2 𝑙𝑛 𝐻 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10  +𝑏2 𝑙𝑛 𝑋 𝑍
4            (34) 

where: all terms are as previously defined. 

For ash: 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10  +𝑏2 𝑙𝑛 𝑋 𝑍
4 

+𝑏3 𝑙𝑛 𝑋 𝑎𝑟𝑐𝑠𝑖𝑛 𝑄 + 𝑏4 𝑙𝑛 𝑋 (1 𝑒𝐷 𝐻  )                           (35) 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10  +𝑏2 𝑙𝑛 𝑋 𝑍
4 

                                         +𝑏4 𝑙𝑛 𝑋 (1 𝑒𝐷 𝐻  )                                                               (36) 
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where: all terms as previously defined. 

For aspen: 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑎2 𝑙𝑛 𝐻 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10 

 +𝑏2 𝑙𝑛 𝑋 𝑍
4 + 𝑏4 𝑙𝑛 𝑋  1 𝑒𝐷 𝐻                                     (37) 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10 

 +𝑏2 𝑙𝑛 𝑋 𝑍
4 + 𝑏5 𝑙𝑛 𝑋 𝐷𝐵𝐻

𝑋                                      (38) 

where: all terms as previously defined. 

For basswood: 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑎2 𝑙𝑛 𝐻 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10 

 +𝑏2 𝑙𝑛 𝑋 𝑍
4 + 𝑏4 𝑙𝑛 𝑋 (1 𝑒𝐷 𝐻  ) + 𝑏5 𝑙𝑛 𝑋 𝐷𝐵𝐻

𝑋    (39) 

𝑙𝑛(𝑑𝑖) = 𝑙𝑛 𝑎0 + 𝑎1 𝑙𝑛 𝐷 + 𝑎2 𝑙𝑛 𝐻 + 𝑏1 𝑙𝑛 𝑋 𝑋
1

10  

+𝑏2 𝑙𝑛 𝑋 𝑍
4 + 𝑏4 𝑙𝑛 𝑋  1 𝑒𝐷 𝐻                                    (37) 

where: all terms as previously defined. 

The parameter estimates for all models [equations (4, 14, 31-39)], for their 

respective species, were examined to see if they were significantly different from zero 

while simultaneously being evaluated for serial autocorrelation.  Fits for all equations 

produced a low Durbin-Watson test statistic (largest value was 0.977), and when 

interpolated to  standard Critical Values of the Durbin-Watson Test Statistic table (Myers 

1990), inference could be made to reject the null hypothesis and accept that each equation 

has positive autocorrelation.  To address the autocorrelation, covariance structures of 

each equation were manipulated to produce the lowest AIC value, hence a lower level of 

autocorrelation.  First-order autoregressive and compound symmetry covariance 
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structures were chosen over other structures because of the use of dependent data in the 

dataset. Both structures were applied to each equation for each respective species.  Tables 

8-10 contain fit statistics (when applicable) comparing approximate/adjusted R
2
, MAE, 

AIC, PRESS, maximum VIF, and Durbin-Watson test statistics for each equation, for 

each species, with original (identity matrix) and selected covariance structures (only 

when all parameter estimates are significantly different from zero) to assist in evaluating 

the best equation for each base model form [equations (4, 14, 16)].      

For equation (4), fits of the equation for all species under the identity matrix 

covariance structure produced a high degree of positive autocorrelation and should 

therefore not be selected.  All species under the first-order autoregressive covariance 

structure yielded the lowest AIC values when compared with the compound symmetry 

covariance structure.  The compound symmetry covariance structure did produce lower 

MAE and higher approximate R
2
 values [both back transformed into original units of 

measure (in.)] than the first-order autoregressive covariance structure for all species, but 

due to high positive autocorrelation and lowest AIC value, the first-order autoregressive 

covariance structure was selected as the best form of equation (4).  As seen in Table 8, 

multicollinearity is not a problem with this equation because all variance inflation factors 

values remained near or under ten.  Parameter estimates and standard errors for fits of 

equation (4) under the first-order autoregressive covariance structure for all species are 

included in Table 11.        

As with equation (4), fits of equations (14) and (31) for all species under the 

identity matrix covariance structure produced a high degree of positive autocorrelation 

and should therefore not be selected for use.  For all species, fits of equations using a  
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Table 8 Fit statistics for base model equation (4) by species, equation, and covariance 

structure  

Species Adjusted R
2
 MAE (in.) AIC PRESS Max VIF DW 

Sugar maple 

Equation (4) 

IM 0.7582 0.9694 -242.2 96.004 10 0.865 

AR(1) 0.8620 1.1604 -1999.2 

CS 0.8780 0.9637 -332.0 

  

Ash 

Equation (4) 

IM 0.8503 1.0034 -1370.2 70.24 10 0.887 

AR(1) 0.8970 1.2283 -3569.1 

CS 0.9190 1.0026 -1406.1 

  

Aspen  

Equation (4) 

IM 0.8975 0.6840 -2633.6 34.08 10 0.688 

AR (1) 0.9210 0.7878 -4859.2 

CS 0.9320 0.6770 -2865.1 

 

Basswood 

Equation (4) 

IM 0.8138 1.0909 -805.2 70.06 11 0.969 

AR(1) 0.8500 1.5092 -2710.3 

CS 0.8960 1.0875 -823.8 

IM=identity matrix covariance structure 

AR (1)=first-order autoregressive covariance structure 

CS=compound symmetry covariance structure 

Max VIF=maximum VIF associated with any single parameter for stated equation 

DW=Durbin-Watson test statistic 
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Table 9 Fit statistics for base model equation (14) by species, equation, and covariance 

structure  

Species Approximate R
2
 MAE (in.) AIC PRESS Max VIF DW 

Sugar maple 

Equation (31) 

IM 0.914 0.7257 -1018.9 63.42 96120 0.721 

AR(1) 0.905 0.7850 -2418.5 

CS 0.916 0.7178 1383.8 

  

Ash 

Equation (31) 

IM 0.954 0.7007 -2533.5 41.31 81417 0.558 

AR(1) 0.947 0.7617 -4649.8 

CS 0.954 0.7039 -2912.8 

  

Aspen  

Equation (31) 

IM 0.955 0.5116 -2529.8 35.51 86905 0.439 

AR (1) 0.947 0.5845 -4763.5 

CS 0.955 0.5162 -2946.8 

 

Basswood 

Equation (14) 

IM 0.953 0.6779 -1639.2 44.49 75301 0.908 

AR(1) 0.948 0.7268 -2379.6 

CS 0.953 0.6752 -1829.6 
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Table 10 Fit statistics for base model equation (16) by species, equation, and covariance 

structure  

Species Approximate R
2
 MAE (in.) AIC PRESS Max VIF DW 

Sugar maple 

Equation (32) 

IM 0.902 0.7859 -940.3 65.95 125 0.803 

CS 0.905 0.7801 -1120.9 

Equation (33) 

IM 0.905 0.7795 -943.3 66.32 513 0.813 

Equation (34) 

IM 0.900 0.7712 -893.8 67.74 3 0.814 

AR (1) 0.883 0.8522 -2052.0 

CS 0.901 0.7665 -1081.1  

 

Ash 

Equation (35) 

IM 0.951 0.7691 -2423.3 43.59 740 0.553 

AR(1) 0.934 0.9154 -4439.3 

Equation (36) 

IM 0.950 0.7673 -2425.5 43.61 635 0.557 

AR (1) 0.945 0.8231 -4351.2 

CS 0.950 0.7690 -2839.3 

  

Aspen  

Equation (37) 

IM 0.943 0.6023 -2137.3 43.26 529 0.525 

CS 0.944 0.5968 -2422.6 

Equation (38) 

IM 0.939 0.6171 -2081.1 44.18 10 0.538 

AR (1) 0.891 0.9077 -4165.6 

CS 0.934 0.6166 -2361.0 

 

Basswood 

Equation (37) 

IM 0.929 0.7898 -1376.7 51.54 297 0.869 

AR(1) 0.930 0.8209 -2274.7 

CS 0.930 0.7829 -1527.4 

Equation (39) 

IM 0.943 0.7464 -1429.7 49.91 368 0.837 

AR (1) 0.942 0.7850 -2320.8 

CS 0.944 0.7381 -1584.4 

Note: For equations (32), (35), and (37) (basswood), the identity matrix covariance 

structure fit statistics were included to show PRESS, Max VIF, and DW though not all 

parameter estimates were significantly different from zero. 
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Table 11 Regression coefficients for equation (4) by species using first-order 

autoregressive covariance structure 

Species Parameter Estimate Standard Error Pr>|t| 

Sugar maple b0 1.5559 0.0326 <0.0001 

 b1 -2.7574 0.1133 <0.0001 

 b2 1.1782 0.0895 <0.0001 

 

Ash b0 1.5467 0.0259 <0.0001 

 b1 -3.0965 0.0889 <0.0001 

 b2 1.5777 0.0660 <0.0001 

 

Aspen b0 1.3660 0.0162 <0.0001 

 b1 -2.3467 0.0589 <0.0001 

 b2 1.0084 0.0457 <0.0001 

 

Basswood b0 1.5805 0.0366 <0.0001 

 b1 -2.7456 0.1185 <0.0001 

 b2 1.2159 0.0918 <0.0001 
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compound symmetry covariance structure produce lower MAE and higher approximate 

R
2
 values than when using a first-order autoregressive covariance structure.  First-order 

autoregressive covariance structures did produce the lowest AIC values for all species, 

and because of the autocorrelation issue, were selected as the best form of equation (14).  

DFFITS values for these equations, using the identity matrix covariance structure, did not 

exceed two for any species.  As seen in Table 9, variance inflation factor values are 

extremely high.  Multicollinearity is a major concern regarding the use of this base 

equation model.  Parameter estimates and standard errors for fits of equations (14 and 31) 

(respectively for species) using a first-order autoregressive covariance structure are 

included in Table 12. 

 Once again for fits of equations (32-39), all species using an identity matrix 

covariance structure produced a high degree of positive autocorrelation and should not be 

selected for use.  For all species the use of first-order autoregressive covariance structures 

produced the lowest AIC values, dealing with the issue of autocorrelation better than a 

compound symmetry covariance structure.  Even though compound symmetry covariance 

structures produced lower MAE and higher R
2
 values for all equations, they were not 

selected because of the importance of autocorrelation.  Since equation (34) produced the 

lowest AIC value and had VIF less than 10, it was selected as the best equation to use for 

sugar maple for base model equation (16).  Even though VIF values were high, equation 

(35) had the lowest AIC values for ash and was selected as the best equation to use for 

base model equation (16).  Aspen, using equation (38) had the lowest AIC values and 

acceptable VIF values, therefore being the selected as the best equation for base model 

equation (16).  For Basswood, equation (39) was chosen as the best fit of base model  
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Table 12 Regression coefficients for base equation model (14) by species using first-

order autoregressive covariance structure  

Species Parameter Estimate Standard Error Pr>|t| 

Sugar maple 

Equation (31) a0 0.2808 0.1025 0.0076  

 a1 0.8241 0.0451 <0.0001 

 b1 0.9954 0.2753 0.0003 

 b2 -0.3632 0.0540 <0.0001 

 b3 3.3627 0.5690 <0.0001 

 b4 -1.4604 0.3066 <0.0001 

 b5 0.5948 0.0574 <0.0001 

  

Ash 

Equation (31) a0 0.1152 0.0657 0.0834 

 a1 0.8875 0.0265 <0.0001 

 b1 1.4025 0.1767 <0.0001 

 b2 -0.5429 0.0345 <0.0001 

 b3 5.7288 0.3759 <0.0001 

 b4 -2.4830 0.2004 <0.0001 

 b5 0.7056 0.0384 <0.0001 

 

Aspen 

Equation (31) a0 0.3178 0.0736 <0.0001 

 a1 0.8141 0.0313 <0.0001 

 b1 1.0111 0.1609 <0.0001 

 b2 -0.3962 0.0314 <0.0001 

 b3 4.3206 0.3359 <0.0001 

 b4 -1.8116 0.1801 <0.0001 

 b5 0.5391 0.0367 <0.0001 

 

Basswood 

Equation (14) a0 -0.2709 0.2415 0.2662  

 a1 1.2088 0.1621 <0.0001 

 a2 -0.0297 0.0134 0.0300 

 b1 2.0700 0.2437 <0.0001 

 b2 -0.5707 0.0488 <0.0001 

 b3 5.3179 0.4998 <0.0001 

 b4 -2.5619 0.2711 <0.0001 

 b5 0.4568 0.0565 <0.0001 
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equation (16) because of having the lowest AIC value.  All selected equations, using the 

identity matrix covariance structure, did not have and DIFFITS values over two.  

Regression coefficients and standard error estimates for fits of equations (34), (35), (38), 

and (39) using a first-order autoregressive covariance structure are included in Table 13. 

Volume Determination 

 Smalian’s formula was used to iterate the volumes for all sample trees included in 

this study.  Volume was determined for each species using the acceptable forms of taper 

equation models selected in the previous section, as well as the acceptable taper equation 

models with the lower bole section volume determined using the accepted outside 

diameter bark stump equation.  MAE and percent error are included for each species 

using each form of volume determination in Table 14. 

 For sugar maple, equation (34) and (20) produced the lowest MAE (2.5940 cu. ft.) 

while equation (31) produced the lowest percent error (14.16%).  Equations (31) and (20) 

together had the lowest MAE (3.3490 cu. ft.) while equation (31) had the lowest percent 

error (11.30%) out of all equations for use with ash.  For aspen, equations (31) and (20) 

together produced the lowest MAE (2.0257 cu. ft.) and percent error (9.00%).  Equations 

(39) and (20) had the lowest MAE (2.8773 cu. ft.) while equation (14) had the lowest 

percent error (8.21%) for basswood. 

Final Model Selection 

  Based on regression diagnostics and fits when determining volume, an equation, 

or set of equations from previously determined acceptable equations, were selected for  
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Table 13 Regression coefficients for base equation model (16) using first-order 

autoregressive covariance structure 

Species Parameter Estimate Standard Error Pr>|t| 

Sugar maple 

Equation (34) a0 1.6465 0.3032 <0.0001  

 a1 0.9242 0.0563 <0.0001 

 a2 -0.3263 0.0888 0.0002 

 b1 0.4529 0.0193 <0.0001 

 b2 0.2948 0.0052 <0.0001 

 

Ash 

Equation (35) a0 0.3520 0.0700 <0.0001  

 a1 0.9364 0.0284 <0.0001 

 b1 1.2350 0.0386 <0.0001 

 b2 0.6350 0.0273 <0.0001 

 b3 0.5068 0.0682 <0.0001 

 b4 -0.7045 0.0451 <0.0001 

 

Aspen 

Equation (38) a0 0.6843 0.1020 <0.0001  

 a1 0.7602 0.0436 <0.0001 

 b1 0.4321 0.0186 <0.0001 

 b2 0.2381 0.0057 <0.0001 

 b5 0.0699 0.0083 <0.0001 

 

Basswood 

Equation (39) a0 1.0547 0.2437 <0.0001  

 a1 0.9694 0.0393 <0.0001  

 a2 -0.1795 0.0659 0.0084 

 b1 0.6968 0.0371 <0.0001 

 b2 0.4532 0.0283 <0.0001 

 b4 -0.3282 0.0515 <0.0001 

 b5 0.0684 0.0093 <0.0001 
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Table 14 Fit statistics for volume determination 

Species MAE (cu. ft.) Percent error 

Sugar maple 

Equation (4) 3.3502 16.02%  

Equation (31) 2.8046 14.16% 

Equation (34) 2.6596 14.92% 

Equation (4, 20) 3.4315 16.49% 

Equation (31, 20) 2.7622 14.30%  

Equation (34, 20) 2.5940 15.27% 

 

Ash 

Equation (4) 6.2301 30.00% 

Equation (31) 3.6434 11.30% 

Equation (35) 4.3017 12.04% 

Equation (4, 20) 6.7599 23.01% 

Equation (31, 20) 3.3490 11.55% 

Equation (35, 20) 3.9856 11.71% 

 

Aspen 

Equation (4) 3.3877 13.08% 

Equation (31) 2.1792 9.37% 

Equation (38) 4.0617 14.64% 

Equation (4, 20) 3.6146 13.94% 

Equation (31, 20) 2.0257 9.00% 

Equation (38, 20) 3.7098 13.47% 

 

Basswood 

Equation (4) 10.4494 25.92% 

Equation (14) 3.2743 8.21% 

Equation (39) 3.2279 9.02% 

Equation (4, 20) 11.2058 27.86% 

Equation (14, 20) 3.0579 8.06% 

Equation (39, 20) 2.8773 8.49% 
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each species to predict outside bark diameters and volume within a standing tree.  It is 

important to note that equations (14) and (31) were discarded from final selection due to 

their high VIF values even though regression diagnostic and fits for these equations 

showed very promising results.  The high degree of multicollinearity attached to these 

equations makes them reflect well upon the original dataset.  If a new dataset were to be 

introduced, these equations would not perform as well as this study indicates. 

 For sugar maple, equation (34) was selected as the final model to use.  Since 

equation (31) was discarded, equation (34) contained the next lowest MAE and AIC 

values compared to equation (4).  The R
2
 value was also larger for equation (34) than for 

equation (4).  Also, for volume determination, equation (34) performed well by itself, 

without the outside bark stump equation.  MAE was low for this equation and percent 

error was very close to the lowest value for all equations.  Two examples, comparing 

observed diameters to predicted diameters of sugar maple trees, using equation (34) are 

included in Figures 2 and 3.  Figure 2 shows a tree with a DBH of 11.45 in. and a total 

height of 66 ft., which was one of the more accurately predicted trees, having a MAE of 

0.40 cu. ft. when comparing observed to predicted volume.  Figure 3 shows a tree with a 

DBH of 12.2 in. and a total height of 76 ft., which was one of the worst predicted trees in 

terms of diameter estimation, having a MAE of 5.55 cu. ft. when predicting volume. 

 Equation (35) performed the best for ash and was selected as the final model 

equation to use.  With equation (31) being discarded, equation (35) had the lowest AIC 

and MAE values and highest R
2
 value when compared to equation (4).  The use of 

equation (20) for the stump diameter did aid equation (35) in determining volume, and 

therefore, was used.  Figures 4 and 5 show observed diameters compared to predicted  
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Figure 2 Observed versus estimated values of outside bark diameters from equation (34) 

for a sugar maple tree on site 1 with a DBH of 11.45 in. and a total height of 66 ft. 
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Figure 3 Observed versus estimated values of outside bark diameters from equation (34) 

for a sugar maple tree on site 4 with a DBH of 12.2 in. and a total height of 76 ft. 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80

Diameter (in.)

Height (ft.)

Observed

Estimated



 

- 63 - 

 

 

 

Figure 4 Observed versus estimated values of outside bark diameters from equations (35) 

and (20) for an ash tree on site 3 with a DBH of 9.8 in. and a total height of 81 ft. 
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Figure 5 Observed versus estimated values of outside bark diameters from equations (35) 

and (20) for an ash tree on site 3 with a DBH of 12 in. and a total height of 85 ft. 
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diameters for two different ash trees, using equation (35) and (20).  An ash tree with a 9.8 

in. DBH and a total height of 81 ft. (Figure 4) was predicted quite accurately having a 

MAE of 0.49 cu. ft. when comparing observed volume to predicted volume.  Another ash 

tree with a DBH of 12 in. and a total height of 85 ft. (Figure 5) was one of the worst 

predicted trees in terms of volume determination, having a MAE of 6.52 cu. ft. 

 For aspen, equation (4) performed the best out of all equations.  Overall, the AIC 

value was the lowest for this equation, and besides for equation (31), equation (4) had the  

next lowest MAE value and next highest R
2
 value.  When determining volume, the 

addition of equation (20) to equation (4) did aid in closer estimates to observed volumes.  

Therefore, the outside bark stump equation should be used when determining volume for 

aspen.  Two examples, comparing observed diameters to predicted diameters of aspen 

trees, using equations (4) and (20) are included in Figures 6 and 7.  Figure 6 shows a tree 

with a 9.6 in. DBH and a total height of 85 ft., which had accurately predicted diameters 

and a MAE of 0.47 cu. ft when predicting volume.  Figure 7 shows a tree with a DBH of 

10.75 in. and a total height of 70 ft., which was not predicted as accurately, having a 

MAE of 9.67 cu. ft. when determining volume.        

 Equation (39) performed the best overall for basswood.  AIC was the highest for 

this equation, but it was not far from the lowest value obtained by equation (4).  Besides 

for equation (14), equation (39) produced the next lowest MAE value and next highest R
2
 

value.  Together, equations (39) and (20) had the lowest MAE value when determining 

volume out of any equation.  Equation (20) did help increase the accuracy of volume 

determination and should be used.  Figures 8 and 9 show observed diameters compared to 

predicted diameters for two different basswood trees, using equations (39) and (20).  A  
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Figure 6 Observed versus estimated values of outside bark diameters from equations (4) 

and (20) for an aspen tree on site 2 with a DBH of 9.6 in. and a total height of 85 ft. 
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Figure 7 Observed versus estimated values of outside bark diameters from equations (4) 

and (20) for an aspen tree on site 1 with a DBH of 10.75 in. and a total height of 70 ft. 
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Figure 8 Observed versus estimated values of outside bark diameters from equations (39) 

and (20) for a basswood tree on site 6 with a DBH of 13 in. and a total height of 75 ft. 
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Figure 9 Observed versus estimated values of outside bark diameters from equations (39) 

and (20) for a basswood tree on site 3 with a DBH of 12.95 in. and a total height of 76 ft. 
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basswood tree with a DBH of 13 in. and a total height of 75 ft. (Figure 8) had accurately 

predicted diameters and a MAE of 0.01 cu. ft. when predicting volume.  A basswood tree 

with a 12.95 in. DBH and a total height of 76 ft. (Figure 9) was not predicted as 

accurately and had a MAE of 5.70 cu. ft. when predicting volume. 
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Discussion 

 Several issues prompted by the nature of this study deserve additional discussion.  

This section explicitly addresses those points of discussion.  

Volume Comparisons 

 To validate the research conducted in this study, and to check for accuracy when 

determining stem cubic foot volumes, two-sided paired t-test (α=0.05) were used to 

compare paired volume estimates. Volumes estimated from application of the selected 

profile equations (by species) were compared to volumes obtained through applying 

Smalian’s formula to the Criterion RD 1000 data directly (observed volumes). The same 

comparison was made for volumes estimated with Gevorkiantz and Olsen’s (1955) Table 

3: Composite table: gross peeled volume in cubic feet, entire stem, by total height.   All 

comparisons were made within three tree size class categories: pulpwood (D < 11.6 in.), 

small sawtimber (11.6 in.  < D < 15.5 in.) and large sawtimber (D > 15.5 in.). It is 

important to note that the volumes predicted from the selected equations should more 

closely resemble the observed volumes because both values came from the same dataset.  

Also, Gevorkiantz and Olsen’s Table 3 is gross peeled volume, meaning that bark is not 

included in the overall volume.  Because of this, predictions of volume should be 

underestimated when compared to observed volumes, as all volumes obtained with the 

dataset included in this study are from outside bark measures. 

 In the sugar maple analysis, equation (34) significantly overpredicted stem 

volumes (p-value 0.005) with an average difference of 0.6 cu.ft. (5% error) whereas the 

Gevorkiantz and Olsen estimates significantly underestimated volumes (p-value < 
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0.0001) by an average difference of 2 cu.ft (15% error) for the pulpwood size class. Both 

methods significantly underpredicted stem volumes in the small sawtimber category (p-

values of 0.0121 and 0.0335, respectively), each resulting in about 13% error. In the large 

sawtimber category, neither method resulted in significant differences in volumes 

estimates (p-values of 0.1484 and 0.3737, respectively).   

 When analyzing ash, neither the combined use of equations (35) and (20)  or the 

Geovorkiantz and Olsen estimates resulted in significant differences when estimating 

volume in the pulpwood size class (p-values of 0.7682 and 0.0550, respectively).  Both 

methods significantly underpredicted stem volumes in the small sawtimber class (p-

values of <0.0001 and 0.0308, respectively), with equations (35) and (20) together having 

an average difference of 3.8 cu. ft. (10% error), while Gevorkiantz and Olsen estimates 

had an average difference of 2.2 cu. ft. (6% error).  Only predicted volumes from 

equations (35) and (20) were found to be significantly different when compared to 

observed volumes of large sawtimber (p-values of 0.0006 and 0.4414, respectively).  

These estimates of stem volume were underestimated with about 13% error and an 

average difference of 9.2 cu. ft.   

 For basswood, equations (39) and (20) together were not found to be significantly 

different in the pulpwood, small sawtimber, or large sawtimber size classes (p-values of 

0.1517, 0.6504, and 0.0524 respectively).  Gevorkiantz and Olsen estimates of stem 

volume led to significantly underestimated volumes for all size classes (p-values of 

<0.0001, <0.0001, and 0.0067, respectively).  These estimates had an average difference 

of 3.8 cu. ft. (19% error), 4.5 cu. ft. (12% error), and 6.1 cu. ft ( 9% error), respectively. 

 In the aspen analysis, equations (4) and (20) significantly overpredicted stem 
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volumes (p-value 0.0007) with an average difference of 1.1 cu.ft. (7% error) whereas the 

Gevorkiantz and Olsen estimates significantly underestimated volumes (p-value < 

0.0001) by an average difference of 2.4 cu.ft (15% error) for the pulpwood size class.  

The same significant trend was noticed for the small sawtimber size class where 

equations (4) and (20) overpredicted volumes (p-value of <0.0001) with about 18% error 

(6.2 cu. ft.), while Gevorkiantz and Olsen estimates were underestimated (p-value of 

0.0013) with about 9% error (3.2 cu. ft.).  In the large sawtimber size class, only 

equations (4) and (20) together were found to be significantly different (p-values of 

0.0165 and 0.8939, respectively) with an overestimate of volume by 13 cu. ft. (25% 

error).  

 Based on these comparisons, the equations developed herein outperformed the 

Gevorkiantz and Olsen (1955) Table 3 in some instances. In other cases they did not, 

indicating the need for refinement of the profile equations. Nonetheless, an advantage of 

using the profile equations developed herein is that they can be used to estimate diameter 

at any point along the bole, which in turn can be used to estimate volume to any top 

diameter. This allows flexibility with respect to changing merchantability 

limits/standards.  

Fitting other Models 

 Fits of segmented polynomial taper models to the dataset were not extensively 

used in this study.  As stated by Martin (1981) for his work on Appalachian hardwoods, 

variable exponent models were not as precise as segmented polynomial models, but were 

just as accurate and simpler to use.  A segmented polynomial model was attempted with 
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the regression dataset, but led to poor results.  Insignificant parameters were detected 

when using both two and three inflection points along the bole of a tree.  With 

insignificant parameters in a segmented system, the model becomes invalid since each 

parameter is tied to a segmented section of the tree.  Based on insignificant fits to these 

data, segmented polynomial taper models were dismissed from further consideration.   

Compatible volume equations and nonlinear seemingly unrelated regression were 

not used in this study because of the lack of compatibility.  It was anticipated within this 

study to include compatible taper and volume equations, but because a compatible 

volume equation does not inherently imply the best fit equation for taper, compatibility 

was excluded.  This study aimed at finding the best taper equation possible from the 

chosen models. 

Nonlinear fixed effect modeling was not used in this study because of the 

exclusion of random parameters.  The benefits of nonlinear fixed effect modeling are that 

flexibility and efficiency in estimation for regional conditions are increased when random 

parameters are included to deal with the variability between sites.  This study 

encompassed a narrow range, insufficient in size to carry a large amount of variability.  

There was no warranting cause to include this type of modeling. 

Data Issues 

 For both the outside bark stump equations and the outside bark profile equations, 

residual error terms of the regression fits were found to be not normally distributed.  This 

means that the residual error terms of dependent variables do not assume a bell shaped 

curve across the levels of dependent variables.  Not having normal distribution can result 
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in problems with homogeneity of variance and linearity (Quinn and Keough 2002).  Since 

distribution was not positively skewed and several equations were already in a 

transformed state, further transformations of dependent variables would not alleviate the 

problem.  Data show that residual error terms for all equations in this study did assume a 

bell shaped curve; however it was highly peaked in the middle, leading to a non normal 

distribution.  A bell shaped curve, though peaked, is still marginally acceptable; skewed 

data would be problematic. 

 Autocorrelation posed a problem for all outside bark profile equations, as seen by 

low Durbin-Watson test statistics.  Since repeated measures were taken on each sample 

tree, all dependent variables are not truly dependent from each other.  Each paired 

height/diameter measure taken or predicted was highly influenced by the previous 

measure.  In this case, errors are correlated and the errors within the covariance matrix 

are no longer ideal (Myers 1990).  Myers (1990) goes on to state that autocorrelation can 

result in an estimate of variance that is underestimated, which can inflate t-statistics on 

coefficients.  This would increase the type I error, making parameter estimates appear to 

be significantly different from zero when they truly are not.  Changing the covariance 

structure to a first-order autoregressive covariance structure, AIC values were drastically 

lowered.  This structure works because constant variance is assumed across the diagonal 

of the matrix and dependent covariates are increasingly less correlated with increasing 

distance.  Just as diameter estimates at DBH are less influential to diameter estimates at 

the top of a tree compared to a diameter estimate ten feet below the top, this covariance 

structure works well when dealing with autocorrelation. 

 Multicollinearity was also a problem which arose from regression analysis.  
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Multicollinearity appears when dependent variables are highly correlated, having linear 

dependencies (Myers 1990).  When this is the situation, coefficient estimates are tied to 

the dataset in which they came from.  Small changes to dataset can drastically affect the 

coefficient estimate.  This would decrease the applicability of any model produced with a 

high degree of multicollinearity.  For this reason, equations (14) and (31) were discarded.  

VIF values for those equations were extremely higher than those for other equations used. 

Project Strengths and Weaknesses 

 This study provides Wisconsin’s forestry community with more accurate and 

applicable taper equations for estimating outside bark diameter for four species of trees 

within the region.  These equations are needed in Wisconsin because of the limiting 

factors associated with current taper/volume estimation methods used during forest 

inventories.  The results of this project should help to increase the amount of taper 

equation scientific literature available for application in Wisconsin.      

Throughout the course of this study, several possible weaknesses of the project 

occurred.  First, several research assistants were used to collect data from standing trees 

using the Criterion RD 1000.  In total, six people were used, none of which were 

previously familiar with the new forestry tool.  Field trials with the equipment were 

conducted prior to engaging in data collection, but user error may have attributed to some 

inconsistent data, coincidently impacting analysis. 

 Data for the project were collected throughout the entire year of 2008.  Some data 

were collected in March and April, before leaf-out, while the rest was collected in early 

to late summer.  Because of the nature of using the Criterion RD 1000, measurements of 
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upper bole diameters were sometimes difficult to take with dense canopy vegetation.  

Errors associated with upper stem diameter estimation when leaves were present may 

have impacted analysis.  It is the recommendation of the author to acquire standing tree 

measurements after leaf senescence in the fall and before leaf-out in the spring, though 

problems with seasonal variation and access may be a hindrance. 

 Other tree and stand attributes may have been helpful in acquiring more accurate 

taper equations for the species used in this study.  Live crown ratio, stand density, soil 

conditions, etc. could have been measured to reduce variability and pinpoint differences 

between sample trees.  However, few studies of taper on hardwood trees have included 

these extra stand and tree attributes.  

 Stands included in this study were in a fairly narrow geographical range.  Any 

conclusions deduced from this project should only be applied to datasets of similar 

origins to the dataset used for this study.  The region specific nature of taper equations 

infers that these conclusions may be of little use outside the region of Wisconsin. 

 Lastly, this study is a small part of a larger project.  A part of the larger project 

includes comparing modeled equations from this study to equations modeled from felled 

trees of the same species.  Through this study, it is known that taper equations can be 

developed from standing trees using the Criterion RD 1000, but it is not yet known how 

accurate they are to felled tree measures taken with calipers.  When completed, that work 

should shed further light on these results.   
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Summary and Conclusion 

 A large component of Wisconsin’s forests is comprised of the four tree species 

examined in this study.  With current trends in the Lake States, higher degrees of 

utilization are more common, requiring more precise and accurate estimates of 

merchantable volume.  This focus towards greater utilization increases the need for 

equations that can accurately predict stem profiles (and inherently produce merchantable 

volumes) better than composite volume tables from the 1950’s and approximation 

formulas.  Once these equations have been developed and/or tested in the field, 

Wisconsin’s forestry community can use them during forest inventories including 

examined species.  In this study, three previously published model forms to estimate tree 

taper were applied to a dataset including aspen, sugar maple, ash, and basswood collected 

in north central Wisconsin to check for predictive ability of paired height/diameters and 

volume estimation. 

 Six study sites were included in this study; two sites at Treehaven, owned and 

operated by the University of Wisconsin-Stevens Point College of Natural Resources, 

near Tomahawk, WI, one site provided by, and located in, Lincoln County, one site 

provided by Kretz Lumber Company Inc. near Crandon, WI, one site provided by Plum 

Creek Timber Company Inc. near Spirit, WI, and the final site at the The Highgrounds 

Veterans Memorial Park, near Nellsville, WI.  Data were collected for all species 

included in the study at all sites when applicable.  Analysis was applied to 312 total trees 

that were sampled throughout 2008.   

 Paired height/diameter measurements were taken on all sample trees included 

within the study, which were then used as the composition of the regression dataset.  
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Paired height/diameter measurements were taken at 0.5, 1.0, 1.5, 2.5, 3.5, 4.5 feet in the 

lower bole section and every three feet beyond that until the top of the tree was reached.  

Tree level attributes including DBH, total height, height to a ten inch diameter top, height 

to a three inch diameter top, and Girard form class were also collected and individually 

averaged for each tree species. 

 An equation was developed to estimate outside bark stump diameter at 0.5 feet for 

each species, and a second set of equations were developed to predict outside bark 

diameters along the entire tree bole for each species.  All equations were developed using 

the entire dataset of sample trees from the six sites used in this study.  Sample trees for 

each species encompassed a large degree of variability in an attempt to increase the 

applicability of developed equations.   

 Two model forms for the outside bark stump equation were compared using 

regression diagnostics to find the best predictor of diameter at 0.5 feet for each species.  

Independent variables of D and D
2
H were used in model building.  The recommended 

equation to use had R
2
 values of 0.7841, 0.9480, 0.9440, 0.8646 and MAE values of 

1.1586, 0.8960, 0.7224, 0.15270 inches for sugar maple, ash, aspen and basswood, 

respectively. 

 Three base model forms for outside bark profile equations were compared using 

regression diagnostics to find the most accurate predictor of paired diameter/height 

estimates.  Since parameter estimates for some equations were not significantly different 

from zero, several versions of the original model forms were developed to test for 

regression diagnostics.  With repeated measures being taken on each sample tree, positive 

autocorrelation became evident in all equations used.  To address this situation, the 
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covariance error structure for each equation was changed to first-order autoregressive 

covariance structure, and AIC values for each equation became dramatically lower.  

Multicollinearity also became a problem in model evaluation because of linear 

dependencies shown by high VIF values.  Certain equations were discarded based solely 

on their high degree of multicollinearity.  Acceptable forms of equations for each species 

were then further scrutinized after predicted volumes were estimated and compared to 

observed volumes. 

 Volumes, in cubic feet, of sample trees were determined through iteration using 

Smalian’s formula.  Each sectional increment from paired height/diameter measure 

provided a cross sectional area at large and small ends of various bole sections.  These 

were then summated to estimate total cubic foot volume in each standing tree.  This 

method was used to estimate volume for all predicted values of acceptable profile 

equations.  Also, volumes for trees were estimated by adding the selected outside bark 

stump equation, for lower bole volume estimates, to the volumes of upper bole estimates 

from the acceptable taper equations.  All forms of volume determination were compared 

using MAE and percent error. 

 Final models were selected for each species based on regression diagnostics from 

fitting models to the dataset and accuracy when determining volume.  For sugar maple, 

the selected equation had an approximate R
2
 value of 0.883, a diameter estimation MAE 

value of 0.8522 inches, an AIC value of -2052, a volume estimation MAE of 2.6596 

cubic feet, and a percent error of 14.92%.  For ash, the final selected equation had an 

approximate R
2
 value of 0.934, a diameter estimation MAE value of 0.9154 inches, an 

AIC value of -4439.3, a volume estimation MAE of 4.3017 cubic feet, and a percent error 
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of 12.04%.  For aspen, the selected final equation had as approximate R
2
 value of 0.897, 

a diameter estimation MAE value of 1.2283 inches, an AIC value of -3569.1, a volume 

estimation MAE of 2.3254 cubic feet, and a percent error of 9.91%.  For basswood, the 

final selected equation had an approximate R
2
 value of 0.942, a diameter estimation MAE 

value of 0.785 inches, an AIC value of -2320.8, a volume estimation MAE of 3.2279 

cubic feet, and a percent error of 9.02%. 

 The equations developed for each species in this thesis should help forestry 

professionals and landowners in determining diameters at merchantable limits and 

volumes of standing trees.  It is hoped that this work will be used in Wisconsin when 

applicable. 
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