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ABSTRACT

Historically, the cisco (Coregonus artedi) was the most abundant fish species in
the Great Lakes, but by the mid-1900s, cisco populations were greatly reduced
throughout the basin. Over-fishing, habitat degradation, and interactions with exotic
species caused cisco yield to decline by 80-99% in each lake. Declining yields forced
commercial fishers to target other species and brought about new regulations designed to
prevent further losses, but except for a few strong year-classes in the 1990s, cisco stocks
failed to recover in the lower Great Lakes. Reduced commercial fishing pressure enabled
cisco to recover in portions of Lake Superior, but historic stock structure was altered, and
abundance is now driven by highly erratic age-1 recruitment and few year-classes of
adults. Management agencies have begun exploring the feasibility of restoring cisco
stocks throughout Lake Superior and the entire Great Lakes basin, but limited
understanding of factors that drive recruitment variation and the spatial scale at which
these factors operate remain barriers to establishing self-sustaining populations.
Identifying major density-independent and density-dependent factors that regulate age-1
cisco recruitment dynamics in Lake Superior, and the spatial scale at which these factors
operate, would be invaluable to cisco restoration and management efforts throughout

Lake Superior and the entire Great Lakes basin.

In Chapter 1, I used a Ricker stock-recruitment model to identify and quantify the
appropriate spatial scale for modeling age-1 cisco recruitment dynamics in Lake
Superior. I found that recruitment variation of cisco in Lake Superior was best described
by an 8-parameter regional model with separate stock-recruitment relationships for

western, southern, eastern, and northern stocks. The spatial scale for modeling was ~260
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km (range = 230-290 km). I also found that the density-independent recruitment rate and
the rate of compensatory density-dependence varied among regions at different rates.
The density-independent recruitment rate varied 2-fold among regions (range = 2.4-4.9
age-1 recruits/spawner) and the rate of compensatory density-dependence varied 21-fold
among regions (range = -0.2 to -3.4 spawners™). Finally, I found that peak recruitment
and the spawning stock size that produced peak recruitment varied among regions. Peak
recruitment varied 10-fold among regions (range = 0.5-5.4 age-1 recruits/ha) and the
spawning stock size that produced peak recruitment varied 21-fold among regions (range
=0.3-6.1 spawners/ha). My findings support the hypothesis that cisco recruitment is
regulated within four different regions of Lake Superior, suggest that large-scale abiotic
factors driving compensatory density-dependence are more important than small-scale
biotic factors in regulating cisco recruitment in Lake Superior, and suggest that fishery
managers throughout Lake Superior and the entire Great Lakes basin should address

cisco restoration and management efforts on a regional scale in each lake.

In Chapter 2, I used a generalized version of the Ricker stock-recruitment model
to identify and quantify the effects of biotic and abiotic factors on age-1 cisco recruitment
dynamics within four different regions of Lake Superior. I found that recruitment
variation of cisco in Lake Superior was correlated to adult spawning stock size in all four
regions, the density of juvenile cisco during the year prior to cisco hatching in three of
four regions, average April air temperature during spring when ciscoes were 11-12
months of age in three of four regions, average April wind speed during spring when
ciscoes were hatching in two of four regions, and the biomass of rainbow smelt during

the year of cisco hatching in one of four regions. My findings support the hypothesis that
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different biotic and abiotic factors regulate cisco recruitment within different regions of
Lake Superior, suggest that air temperature during spring when ciscoes are 11-12 months
of age drives recruitment variation on a lake-wide scale, whereas adult spawning stock
size, intraspecific interactions with juvenile cisco, wind speed during spring when ciscoes
are hatching, and interspecific interactions with rainbow smelt regulate recruitment
variation on a regional scale in Lake Superior, and suggest that fishery managers
throughout Lake Superior and the entire Great Lakes basin should evaluate the potential
effects of similar biotic and abiotic factors on recruitment prior to addressing cisco

restoration and management efforts in each lake.
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INTRODUCTION

One of the most important but difficult problems in the assessment of fisheries is
the relationship between spawning stock size and recruitment (Hilborn and Walters
1992). The stock-recruitment relationship quantifies the ability of a fish stock to replace
itself over a range of spawning stock sizes (Koslow 1991; Hilborn and Walters 1992),
and is essential to many models used to estimate optimal fishing strategies (Koslow
1991). However, the stock-recruitment relationship is often obscured by the effects of
environmental variation, thereby causing recruitment to appear independent of spawning
stock size (Ricker 1975; Koslow 1991; Hilborn and Walters 1992). Recruitment can be
indexed at any life stage, but for many fish stocks, recruitment is established within the
first year of life, primarily during egg and larval stages (Ricker 1975). Spawning stock
size and environmental variation collectively determine egg and larval survival through
density-dependent and density-independent mechanisms (Ricker 1975; Koslow 1991;
Hilborn and Walters 1992). When annual variation in recruitment is driven by
environmental variables, multi-factor stock-recruitment models can be used to quantify
the separate effects of environmental variation and spawning stock size on recruitment

(Ricker 1975; Walters et al. 1986; Madenjian et al. 1996; Hansen et al. 1998; Hoff 2004).

Cisco in the Great Lakes

Historically, the cisco (Coregonus artedi) was the most abundant, and most
ecologically and economically important fish species in the Great Lakes (Smith 1995).
Early observations and catch records indicate that cisco were plentiful throughout the
basin (Dryer and Beil 1964; Smith 1995), and dominated total biomass of all Great Lakes

fish communities (Berst and Spangler 1973; Hartman 1973; Lawrie and Rahrer 1973;



Wells and McLain 1973). Ecologically, cisco served as a key prey species in native food
webs, where they acted as highly efficient trophic intermediaries and linked crustacean
zooplankton production to commercially valuable piscivore stocks (Dryer and Beil 1964;
Dryer et al. 1965; Berst and Spangler 1973; Conner et al. 1993; Smith 1995; Bronte et al.
2003; Hoff 2004; Fitzsimons and O’Gorman 2006). Economically, cisco contributed
nearly 1.36-billion kg to commercial harvests (cumulative basin-wide yield based on
lake-specific pre-decline averages) and predominated in fishery yields in each of the

Great Lakes (Baldwin et al. 2006).

By the mid-1900s, a combination of over-fishing, habitat degradation, and
interactions with exotic species led to severe declines in cisco abundance across the basin
(Edsall and DeSorcie 2002; Fitzsimons and O’Gorman 2006). As cisco stocks collapsed,
yield declined by 96% in Lake Ontario (1941-1953), 99% in Lake Erie (1946-1958),
95% in Lake Huron (1952-1957), 99% in Lake Michigan (1954—-1963), and 80% in Lake
Superior (1966-1976; Baldwin et al. 2006). Declining yields forced commercial fishers
to target other species and brought about new regulations designed to prevent further
losses, but except for a few strong year-classes in the 1990s, cisco stocks failed to recover
in the lower Great Lakes (Fitzsimons and O’Gorman 2006). Annual yield has remained
below 50,000 kg since 1953 in Lake Ontario, 1958 in Lake Erie, 1957 in Lake Huron,
and 1963 in Lake Michigan (Baldwin et al. 2006). Reduced commercial fishing pressure
enabled cisco to recover in portions of Lake Superior, but historic stock structure was
altered (Goodyear et al. 1981; Selgeby 1982; Horns 2003), and abundance is now driven
by highly erratic age-1 recruitment and few year-classes of adults (Bronte et al. 2003;

Hoff 2004). Currently, Lake Superior sustains an average annual yield that is only 14.8%



(798,000 kg average annual yield during 1977-2000) of the average annual yield during
the 50-year period prior to stock decline (5.4-million kg average annual yield during

1915-1965; Baldwin et al. 2006).

Cisco yield has always been variable in the Great Lakes (Wells and McLain
1973). In the 50-year period prior to stock declines, yield varied 10-fold in Lake Ontario
(1890-1940), 588-fold in Lake Erie (1895-1945), 9-fold in Lake Huron (1901-1951), 20-
fold in Lake Michigan (1903—-1953), and 5-fold in Lake Superior (1915-1965; Baldwin et
al. 2006). Variability in yield was influenced by changing market demand and weather
conditions during peak commercial fishing seasons, but primarily by changes in cisco
abundance as strong and weak year-classes moved through fisheries in each lake (Wells
and McLain 1973). Some of the weakest year-classes were produced by large parental
stocks, whereas some of the strongest year-classes were produced by small parental
stocks. Early researchers believed that cisco recruitment was primarily established
during the first year of life by density-independent environmental influences on egg and
larval survival (Scott 1951; Powers et al. 1959). However, a lack of long-term data
prevented stock-recruitment analysis to test such theories. Long-term data enabling

stock-recruitment analysis are now available for Lake Superior (Hoff 2004).

The U.S. Geological Survey (USGS, Lake Superior Biological Station, Ashland,
WI) has conducted spring bottom-trawl surveys of the near-shore fish community in U.S.
waters of Lake Superior since 1978 and Canadian waters of Lake Superior since 1989.
Bottom-trawl assessments have shown that cisco year-class strength and subsequent
recruitment to the adult stage is primarily established prior to sampling age-1 fish in the

spring of each year (Kinnunen 1997; Bronte et al. 2003; Hoff 2004; Ebener et al. 2008;



Stockwell et al. 2009). During 1978-2007, age-1 cisco recruitment varied 339-fold in
U.S. waters (1978-2007) and 48-fold in Canadian waters (1989-2007; calculated from
geometric mean spring bottom-trawl densities; USGS, Lake Superior Biological Station,
Ashland, WI). Strong recruitment events were highly synchronous across the lake
(Kinnunen 1997; Bronte et al. 2003; Ebener et al. 2008; Stockwell et al. 2009), and
characterized by large regional differences in year-class strength (Ebener et al. 2008;
Stockwell et al. 2009). Some of the weakest year-classes were produced by large
parental stocks, whereas some of the strongest year-classes were produced by small
parental stocks (Bronte et al. 2003; Horns 2003; Hoff 2004). These recruitment events
suggest that density-independent and density-dependent factors may both be important
regulators of age-1 cisco recruitment dynamics in Lake Superior (Ricker 1975; Hilborn
and Walters 1992; Bronte et al. 2003; Hoff 2004). Similarity between current age-1 cisco
recruitment variability in Lake Superior and historic variability in yield throughout the
lower Great Lakes suggests that many of the same factors driving recruitment dynamics
in Lake Superior may have been operating in the lower Great Lakes prior to cisco

declines during the mid-1900s.

The fish-community objective for prey species in Lake Superior calls for
rehabilitation of cisco stocks to historic levels of abundance to provide a forage base for
lake trout (Salvelinus namaycush) and to support a commercial fishery (Busiahn 1990).
Fishery management plans for the lower Great Lakes recognize the cisco as an important
member of the native fish community and call for reestablishment of self-sustaining
populations throughout the species historic range (Edsall and DeSorcie 2002).

Management agencies have begun exploring the feasibility of restoring cisco stocks



throughout Lake Superior and the entire Great Lakes basin, but limited understanding of
factors that drive recruitment variation and the spatial scale at which these factors operate
remain barriers to establishing self-sustaining populations (Hoff 2004; Fitzsimons and
O’Gorman 2006). Identifying major density-independent and density-dependent factors
that regulate age-1 cisco recruitment dynamics in Lake Superior, and the spatial scale at
which these factors operate, would be invaluable to cisco restoration and management

efforts throughout Lake Superior and the entire Great Lakes basin.
Cisco Distribution and Life History

The cisco is endemic to North America and is widely distributed throughout the
northern portion of the continent (Figure 1; Scott and Crossman 1973; Lee et al. 1980;
Becker 1983; Latta 1995). Native and introduced populations inhabit water bodies from
the Great Lakes and upper Mississippi River drainage throughout eastern and central
Canada (Lee et al. 1980; Becker 1983; Fisher and Fielder 1998). Near the northern limit
of the species range, individuals inhabit large rivers, ponds, and coastal waters of Hudson
Bay (Scott and Crossman 1973; Lee et al. 1980; Becker 1983). In the Great Lakes
region, the cisco is primarily a lake species that is limited to deep, glaciated, oligotrophic
lakes (Dorr and Eschman 1970; Scott and Crossman 1973; Latta 1995; Edsall and

DeSorcie 2002).

Because of the cisco’s wide geographic distribution and wide variety of habitats,
individuals exhibit a high degree of phenotypic plasticity (Scott and Crossman 1973; Lee
et al. 1980; Becker 1983; Hubbs and Lagler 2004). The species has been divided into as
many as 24 different subspecies (Koelz 1931), but the cisco is presently considered a

species complex (McPhail and Lindsey 1970). A member of the family Salmonidae and



the subfamily Coregoninae, typical individuals are elongate and silver, with a black, blue-
green, gray, or tan back (Figure 2; Scott and Crossman 1973; Becker 1983). The cisco
can be distinguished from other related species by internal characteristics, the presence of
large cycloid scales, a count of 38—64 gill-rakers, and a terminal mouth with the lower
jaw protruding slightly beyond the upper lip (Scott and Crossman 1973; Becker 1983;
Hubbs and Lagler 2004). The species averages 203—305 mm total length (TL; Scott and
Crossman 1973) and 75-285 g weight (Scott and Crossman 1973; Fisher and Fielder
1998). The largest cisco ever recorded was a 3,629 g female taken from central Lake

Erie in 1949 (Scott and Crossman 1973).

In the Great Lakes, adult ciscoes are pelagic and form schools in mid-water,
where they feed primarily on large crustacean zooplankton (Dryer and Beil 1964; Scott
and Crossman 1973; Becker 1983). Ciscoes are usually found where water temperatures
are less than 17-18°C and dissolved oxygen concentrations are greater than 3—4 mg/L
(Hile 1936; McLain and Magnuson 1988). The upper lethal temperature for adult cisco is
about 20°C (Frey 1955; Colby and Brooke 1969) and the lower lethal temperature is near

0°C (Frey 1955).

In spring and early summer, adult ciscoes occupy near-shore surface waters. As
surface waters warm, individuals move offshore, where they maintain a wide vertical
distribution in the water column (Selgeby and Hoff 1996). In autumn, adult ciscoes
return to near-shore surface waters, where they remain until spawning (Dryer and Beil
1964; Scott and Crossman 1973; Becker 1983; Selgeby and Hoff 1996). Despite large
seasonal variation in lateral distribution, most ciscoes do not travel great distances (Scott

and Crossman 1973). A 3-year tagging study in Lake Michigan reported an average



movement distance of 16.5 km and a maximum movement distance of 88.5 km (Smith

and Van Oosten 1940).

Ciscoes mature at 3—4 years of age (Scott and Crossman 1973; Becker 1983) and
may live 20 years or more (Ebener et al. 2008; Stockwell et al. 2009). Spawning is from
late November to early December when water temperature reaches 2.8—4.4°C (Scott and
Crossman 1973; Becker 1983). Adult ciscoes form large schools and spawn pelagically
in near-shore waters (Dryer and Beil 1964; Scott and Crossman 1973; Becker 1983).
Spawning occurs over a variety of substrates in depths ranging 3—64 m (Smith 1956;
Dryer and Beil 1964; Scott and Crossman 1973). In Lake Superior, most commercial
fishers target adult females prior to spawning, which may limit recruitment by reducing

egg deposition (Yule et al. 2006a).

During spawning, cisco eggs are fertilized in the water column and drift to the
bottom, where they remain until hatching in late April to early May (Pritchard 1930; John
and Hasler 1956; Oyadomari 2005). A single individual may spawn multiple times
during its life (Scott and Crossman 1973). The number of eggs deposited by each female
is correlated to body size, and fecundity varies among populations (Anderson and Smith
1971; Scott and Crossman 1973; Becker 1983). In the Apostle Islands region of Lake
Superior, cisco fecundity was linearly related to female body size (R* = 0.88;n=22

females; P < 0.0001; range = 127-568 g; Yule et al. 2006b):

Fecundity (number of eggs) = —86.5 +46.5 x Female Mass (g)

Incubation lasts about 43 days at 10.0°C (Hinrichs and Brooke 1975), 92 days at 5.6°C,
106 days at 5.0°C, and 236 days at 0.5°C (Colby and Brooke 1970). The optimum

temperature for incubation is 2—-8°C (Colby and Brooke 1970). Laboratory tests indicate



that hatching date may be independent of spawning date, synchronous across lakes, and
determined by local spring thermal and light regimes (John and Hasler 1956). Following
severe winters, hatching date may be delayed by a dormancy mechanism related to spring
ice cover (John and Hasler 1956). Under laboratory conditions, longer incubation periods
result in larger post-hatch larvae than shorter incubation periods, and stable incubation
temperatures result in greater hatching success than unstable incubation temperatures
(Colby and Brooke 1970). Extended spring ice cover may increase recruitment by
delaying hatching, thereby producing larger post-hatch larvae that are more likely to
avoid size-dependent predation, and stabilizing temperatures during incubation, thereby
increasing hatching success (Colby and Brooke 1970; Kinnunen 1997). In shallow
waters, extended spring ice cover may also protect incubating eggs from late-winter
storms (Kinnunen 1997). During spawning, recruitment may be limited by egg predation
from other cisco age-classes (Dryer and Beil 1964; Anderson and Smith 1971; Becker
1983). During incubation, recruitment may be limited by egg predation from slimy

sculpin (Cottus cognatus; Anderson and Smith 1971; Hoff 2004).

Upon hatching in late April to early May, age-0 cisco live in near-shore surface
waters, where they feed on immature copepod zooplankton for 3—4 weeks until they
move into deeper waters (Anderson and Smith 1971; Scott and Crossman 1973; Becker
1983; Selgeby et al. 1994). Age-0 ciscoes are about 10 mm TL at hatching and take 1-2
days to reach the swim-up stage (John and Hasler 1956; Hinrichs and Brooke 1975;
Hatch and Underhill 1988). Exogenous feeding requires light, overlaps endogenous
feeding, and starts on the day of hatching (John and Hasler 1956; Colby and Brooke

1970; Selgeby et al. 1994). Under laboratory conditions, age-0 cisco can survive without



food for about 20 days after hatching at normal spring temperatures (4—11°C) and up to
30 days at lower temperatures (3—4°C; John and Hasler 1956). The yolk sac is
completely absorbed at 13 mm TL, 25-30 days after hatching (Oyadomari 2005). By the
end of June, age-0 ciscoes are 1520 mm TL, and move into deeper waters (Pritchard
1930; Hatch and Underhill 1988; Oyadomari and Auer 2004). Upon hatching,
recruitment may be limited by predation and competition from other cisco age-classes
(Pritchard 1931; Anderson and Smith 1971; Becker 1983; Jensen 1996; Hoff et al. 1997;
Bronte et al. 2003; Hoff 2004), rainbow smelt (Osmerus mordax; Anderson and Smith
1971; Walter and Hoagman 1975; Selgeby et al. 1978; Hrabik et al. 1998; Cox and
Kitchell 2004), and bloater (Coregonus hoyi; Anderson and Smith 1971; Davis and Todd
1992). Strong winds during hatching may disperse patches of newly hatched larvae,
thereby limiting age-0 predation (Hoff 2004). Upon moving into deeper waters, age-0

ciscoes are an important food for lake trout (Edsall and DeSorcie 2002).

Age-0 ciscoes actively seek optimal temperatures for growth and development
(Edsall and DeSorcie 2002). The upper lethal temperature for age-0 cisco is about 26°C
and the lower lethal temperature is near 0°C (Edsall and Colby 1970). Under laboratory
conditions, temperatures of 13—18°C were ideal for sustained growth (McCormick et al.
1971). In the Keweenaw Peninsula region of Lake Superior, ciscoes in near-shore waters
were more abundant and larger than ciscoes in offshore waters (Oyadomari and Auer
2004). Differences in size were likely because near-shore ciscoes were older and grew
faster in warmer near-shore waters than ciscoes in colder offshore waters (Oyadomari and
Auer 2004). Sub-optimal temperatures during age-0 development may magnify the

effects of predation and competition (Kinnunen 1997; Pangle et al. 2004) or prevent



individuals from reaching adequate size for over-winter survival (Edsall and DeSorcie
2002; Pangle et al. 2004). Wind-driven currents may mediate age-0 survival through
transport to optimal or sub-optimal waters for growth and development (Oyadomari and
Auer 2004). Sub-optimal temperatures during spring when ciscoes are 11-12 months of
age may place additional stress on new recruits following severe winters (Kinnunen

1997; Hoff 2004; Pangle et al. 2004).
Study Area

Lake Superior is located near the head of the St. Lawrence River drainage, and is
bordered by one Canadian province to the north (Ontario) and three U.S. states to the
south (Michigan, Wisconsin, and Minnesota). A surface area of 8.24-million ha and a
volume of 12,233 km® make Lake Superior the largest of the Great Lakes (Lawrie and
Rahrer 1973). Lake Superior has the lowest annual average temperature (3.6°C) of any of
the Great Lakes and the longest spring convective period (Bennett 1978; Hoff 2004).

The interaction of cold temperature, extended convective period, and large fetch result in
strong wind-driven currents (Hoff 2004). Persistent thermal stratification is usually
present by mid-July in near-shore waters, but stratification is often well developed during
extended calm periods in more exposed waters, only to be disrupted by strong winds
(Lawrie and Rahrer 1973). Lake Superior does not freeze over, but substantial ice cover

is present during winter months (Marshall 1967).

Lake Superior is highly oligotrophic (Hansen 1990). Transparency is usually 10
m or more (Hansen 1990) and dissolved oxygen concentration is above 100% saturation
for all months except November (Weiler 1978). Primary production is near the low end

of the range for freshwater lakes, so commercial fish production per unit of surface area
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is lower than in all other Great Lakes (Table 1; Hansen 1990; Horns 2003). Total lake-
wide commercial production peaked at 11.6-million kg (1941; Lawrie and Rahrer 1973)
and currently sustains yields around 2.6-million kg (average annual yield during 1985—
2000; Baldwin et al. 2006). The native fish community of Lake Superior included 73
species in 18 families (Lawrie 1978), but biomass was dominated by lake trout, lake
whitefish (Coregonus clupeaformis), cisco, and several species of related deepwater

chubs (Coregonus spp.; Hansen 1990).

Despite decades of growth throughout the lower Great Lakes basin, human
population density has remained relatively low (less than 20 people per km?) in the Lake
Superior basin (Lee and Beaulieu 1971). A large amount of the basin remains forested,
with little agricultural or urban development (Lawrie and Rahrer 1973). Lake Superior
has been little affected by industrial pollution or run-off from agricultural and residential
sources. The greatest influences from human development have been over-fishing and

introductions of exotic species (Lawrie and Rahrer 1973).

Cisco recruitment is not limited by habitat at any historic spawning sites in Lake
Superior (Figure 3; Horns 2003). Over-fishing of discrete stocks (Selgeby 1982; Bronte
et al. 2003) and interactions with rainbow smelt (Anderson and Smith 1971; Selgeby et
al. 1978; Cox and Kitchell 2004) are generally considered the two most likely factors
contributing to cisco declines during the mid-1900s. Many studies have attempted to
identify factors driving contemporary age-1 cisco recruitment dynamics in Lake Superior,
but most have provided inconclusive or conflicting results. Factors that may regulate
contemporary age-1 cisco recruitment include adult spawning stock size (Bronte et al.

2003; Horns 2003; Hoff 2004), commercial fishing mortality (Selgeby 1982),
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intraspecific and interspecific interactions (Dryer and Beil 1964; Dryer et al. 1965;
Anderson and Smith 1971; Berst and Spangler 1973; Selgeby et al. 1978; Jensen 1996;
Bronte et al. 2003; Horns 2003; Cox and Kitchell 2004; Hoff 2004), and environmental
variation (Kinnunen 1997; Bronte et al. 2003; Hoff 2004). Highly synchronous, lake-
wide recruitment events suggest that large-scale abiotic factors drive recruitment
variation on a lake-wide scale, whereas small-scale biotic factors regulate recruitment
variation on a regional scale in Lake Superior (Kinnunen 1997; Bronte et al. 2003;

Stockwell et al. 2009).
OBJECTIVES

My first objective was to identify and quantify the appropriate spatial scale for
modeling age-1 cisco recruitment dynamics in Lake Superior. In Chapter 1, [ used a
Ricker stock-recruitment model (Ricker 1975) to identify and quantify the appropriate
spatial scale for modeling age-1 cisco recruitment dynamics in Lake Superior. I expected
to find that multiple cisco stocks within geographic regions of Lake Superior could be
modeled using a single set of stock-recruitment parameters, because large-scale abiotic
factors are generally considered more important than small-scale biotic factors in
regulating age-1 cisco recruitment in Lake Superior (Kinnunen 1997; Bronte et al. 2003;
Hoff 2004; Stockwell et al. 2009). I also expected to find compensatory density-
dependence for regional stock-recruitment models, because a previous stock-recruitment
study (Hoff 2004) found significant compensatory density-dependence in Wisconsin
waters of Lake Superior. Finally, I expected to find different rates of compensatory

density-dependence among regional stock-recruitment models, because age-1 cisco
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recruitment has previously been observed to vary regionally in Lake Superior (Ebener et

al. 2008; Stockwell et al. 2009).

My second objective was to identify and quantify the effects of biotic and abiotic
factors on age-1 cisco recruitment dynamics in Lake Superior at spatial scales identified
in Chapter 1. In Chapter 2, [ used a generalized version of the Ricker stock-recruitment
model (Ricker 1975; Hilborn and Walters 1992) to identify and quantify the effects of
biotic and abiotic factors on age-1 cisco recruitment dynamics within four different
regions of Lake Superior. I expected to find a significant positive effect on age-1 cisco
recruitment from wind speed during spring when ciscoes were hatching, and air
temperature during spring when ciscoes were 11—12 months of age, because a previous
study (Hoff 2004) showed that these factors were correlated to age-1 cisco recruitment in
Lake Superior. I also expected to find a significant negative effect on age-1 cisco
recruitment from slimy sculpin biomass during the year prior to cisco hatching, and lake
trout biomass during the year of cisco hatching, because a previous study (Hoff 2004)
showed that these factors were correlated to age-1 cisco recruitment in Lake Superior.
Additionally, I expected to find significant negative effects on age-1 cisco recruitment
from juvenile cisco density and rainbow smelt biomass during the year of cisco hatching,
because intraspecific interactions with other cisco age-classes and interspecific
interactions with rainbow smelt are generally considered to limit age-1 cisco recruitment
in Lake Superior (Anderson and Smith 1971; Selgeby et al. 1978; Jensen 1996; Bronte et
al. 2003; Horns 2003; Cox and Kitchell 2004; Hoff 2004; Ebener et al. 2008; Stockwell

et al. 2009). Finally, I expected to find that different variables explained variation in
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recruitment within different regions, because age-1 cisco recruitment has previously been

observed to vary regionally in Lake Superior (Ebener et al. 2008; Stockwell et al. 2009).
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Table 1. Primary production and average annual commercial fish yield in each of the

Great Lakes during 15-year periods of maximum commercial harvest (Horns 2003).

Lake Primary Production (g/mz/yr) Fish Yield (kg/ha)

Erie 240-250 9.71
Ontario 180-190 1.24
Michigan 140-150 2.23
Huron 80-90 2.09
Superior 40-50 1.19
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Figure 1. Cisco distribution in North America (Lee et al. 1980; Becker 1983; Fisher and

Fielder 1998).
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Figure 2. Adult cisco taken from southern Lake Superior in June 2006 (USGS, Lake

Superior Biological Station, Ashland, WI).
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[ Spawning Area
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Figure 3. Locations of known historic cisco spawning and nursery areas in Lake Superior

(Goodyear et al. 1981; Horns 2003).

18



Chapter 1:
The Spatial Scale for Cisco Recruitment Dynamics

in Lake Superior during 1978-2007

Abstract — The cisco (Coregonus artedi) was once the most abundant fish species in the
Great Lakes, but currently, cisco populations are greatly reduced, and management
agencies are attempting to restore the species throughout the basin. To increase
understanding of the spatial scale at which density-independent and density-dependent
factors regulate cisco recruitment dynamics in the Great Lakes, I used a Ricker stock-
recruitment model to identify and quantify the appropriate spatial scale for modeling age-
1 cisco recruitment dynamics in Lake Superior. I found that recruitment variation of
cisco in Lake Superior was best described by an 8-parameter regional model with
separate stock-recruitment relationships for western, southern, eastern, and northern
stocks. The spatial scale for modeling was ~260 km (range = 230-290 km). I also found
that the density-independent recruitment rate and the rate of compensatory density-
dependence varied among regions at different rates. The density-independent recruitment
rate varied 2-fold among regions (range = 2.4—4.9 age-1 recruits/spawner) and the rate of
compensatory density-dependence varied 21-fold among regions (range = -0.2 to -3.4
spawners"). Finally, I found that peak recruitment and the spawning stock size that
produced peak recruitment varied among regions. Peak recruitment varied 10-fold
among regions (range = 0.5-5.4 age-1 recruits/ha) and the spawning stock size that
produced peak recruitment varied 21-fold among regions (range = 0.3—6.1 spawners/ha).

My findings support the hypothesis that cisco recruitment is regulated within four
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different regions of Lake Superior, suggest that large-scale abiotic factors driving
compensatory density-dependence are more important than small-scale biotic factors in
regulating cisco recruitment in Lake Superior, and suggest that fishery managers
throughout Lake Superior and the entire Great Lakes basin should address cisco

restoration and management efforts on a regional scale in each lake.
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INTRODUCTION

Historically, the cisco (Coregonus artedi) was the most abundant fish species in
the Great Lakes (Smith 1995), but by the mid-1900s, cisco populations were greatly
reduced throughout the basin (Fitzsimons and O’Gorman 2006). Over-fishing, habitat
degradation, and interactions with exotic species caused cisco yield to decline by 80-99%
in each lake (Edsall and DeSorcie 2002; Baldwin et al. 2006; Fitzsimons and O’Gorman
2006). Declining yields forced commercial fishers to target other species and brought
about new regulations designed to prevent further losses, but except for a few strong
year-classes in the 1990s, cisco stocks failed to recover in the lower Great Lakes
(Fitzsimons and O’Gorman 2006). Reduced commercial fishing pressure enabled cisco
to recover in portions of Lake Superior, but historic stock structure was altered
(Goodyear et al. 1981; Selgeby 1982; Horns 2003), and abundance is now driven by
highly erratic age-1 recruitment and few year-classes of adults (Bronte et al. 2003; Hoff
2004). Management agencies have begun exploring the feasibility of restoring cisco
stocks throughout Lake Superior and the entire Great Lakes basin, but limited
understanding of factors that drive recruitment variation and the spatial scale at which
these factors operate remain barriers to establishing self-sustaining populations (Hoff
2004; Fitzsimons and O’Gorman 2006). Identifying major density-independent and
density-dependent factors that regulate age-1 cisco recruitment dynamics in Lake
Superior, and the spatial scale at which these factors operate, would be invaluable to
cisco restoration and management efforts throughout Lake Superior and the entire Great
Lakes basin. A comprehensive analysis of cisco stock-recruitment in Lake Superior can

provide a framework for addressing these questions.
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The stock-recruitment relationship quantifies the ability of a fish stock to replace
itself over a range of spawning stock sizes (Koslow 1991; Hilborn and Walters 1992),
and is essential to many models used to estimate optimal fishing strategies (Koslow
1991). However, the stock-recruitment relationship is often obscured by the effects of
environmental variation, thereby causing recruitment to appear independent of spawning
stock size (Ricker 1975; Koslow 1991; Hilborn and Walters 1992). Recruitment can be
indexed at any life stage, but for many fish stocks, recruitment is established within the
first year of life, primarily during egg and larval stages (Ricker 1975). Spawning stock
size and environmental variation collectively determine egg and larval survival through
density-dependent and density-independent mechanisms (Ricker 1975; Koslow 1991;
Hilborn and Walters 1992). When annual variation in recruitment is driven by
environmental variables, multi-factor stock-recruitment models can be used to quantify
the separate effects of environmental variation and spawning stock size on recruitment
(Ricker 1975; Walters et al. 1986; Madenjian et al. 1996; Hansen et al. 1998; Hoff 2004).
Identifying the appropriate spatial scale for modeling the stock-recruitment relationship is

an important preliminary step in any multi-factor stock-recruitment analysis.

The U.S. Geological Survey (USGS, Lake Superior Biological Station, Ashland,
WI) has conducted spring bottom-trawl surveys of the near-shore fish community in U.S.
waters of Lake Superior since 1978 and Canadian waters of Lake Superior since 1989.
During 1978-2007, age-1 cisco recruitment varied 339-fold in U.S. waters (1978-2007)
and 48-fold in Canadian waters (1989-2007; calculated from geometric mean spring
bottom-trawl densities; USGS, Lake Superior Biological Station, Ashland, WI). Strong

recruitment events were highly synchronous across the lake (Kinnunen 1997; Bronte et
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al. 2003; Ebener et al. 2008; Stockwell et al. 2009), and characterized by large regional
differences in year-class strength (Ebener et al. 2008; Stockwell et al. 2009). Lake-wide
recruitment events occurred in 1984, 1988—1990, 1998, and 2003 (Ebener et al. 2008;
Stockwell et al. 2009). Additional localized large year-classes were established in
Minnesota waters in 1978 and eastern Michigan waters in 1983 (Stockwell et al. 2009).
In 1984, the large year-class in Minnesota waters was smaller than in other U.S. waters
(Stockwell et al. 2009). In 1998, the large year-class in eastern Michigan and eastern
Ontario waters was smaller than in other U.S. and Canadian waters (Ebener et al. 2008;
Stockwell et al. 2009). Large regional differences in age-1 cisco year-class strength and
regional deviations from normal patterns of recruitment synchrony suggest that separate
stock-recruitment models should be developed for western, southern, eastern, and

northern regions of Lake Superior.

My objective was to identify and quantify the appropriate spatial scale for
modeling age-1 cisco recruitment dynamics in Lake Superior. I used a Ricker stock-
recruitment model (Ricker 1975) to identify and quantify the appropriate spatial scale for
modeling age-1 cisco recruitment dynamics in Lake Superior. I expected to find that
multiple cisco stocks within geographic regions of Lake Superior could be modeled using
a single set of stock-recruitment parameters, because large-scale abiotic factors are
generally considered more important than small-scale biotic factors in regulating age-1
cisco recruitment in Lake Superior (Kinnunen 1997; Bronte et al. 2003; Hoff 2004;
Stockwell et al. 2009). I also expected to find compensatory density-dependence for
regional stock-recruitment models, because a previous stock-recruitment study (Hoff

2004) found significant compensatory density-dependence in Wisconsin waters of Lake
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Superior. Finally, I expected to find different rates of compensatory density-dependence
among regional stock-recruitment models, because age-1 cisco recruitment has
previously been observed to vary regionally in Lake Superior (Ebener et al. 2008;

Stockwell et al. 2009).
METHODS
Study Area

Lake Superior is located near the head of the St. Lawrence River drainage, and is
bordered by one Canadian province to the north (Ontario) and three U.S. states to the
south (Michigan, Wisconsin, and Minnesota). A surface area of 8.24-million ha and a
volume of 12,233 km® make Lake Superior the largest of the Great Lakes (Lawrie and
Rahrer 1973). Lake Superior is highly oligotrophic (Hansen 1990). Primary production
is near the low end of the range for freshwater lakes, so commercial fish production per
unit of surface area is lower than in all other Great Lakes (Hansen 1990; Horns 2003).
The native fish community of Lake Superior included 73 species in 18 families (Lawrie
1978), but biomass was dominated by lake trout (Salvelinus namaycush), lake whitefish
(Coregonus clupeaformis), cisco, and several species of related deepwater chubs
(Coregonus spp.; Hansen 1990). Lake Superior has been little affected by point or non-
point source pollution. The greatest influences from human development have been

over-fishing and introductions of exotic species (Lawrie and Rahrer 1973).
Cisco Sampling

Cisco recruitment was indexed using catch rates of age-1 cisco in spring bottom-

trawl surveys when fish were 13—14 months of age and <140 mm total length (TL; Hoff
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2004). Large cisco year-classes typically include a significant number of individuals
>140 mm TL (USGS, Lake Superior Biological Station, Ashland, WI), so length-
frequency distributions were examined and the TL cut-off was adjusted to include all
age-1 individuals. Spring bottom-trawl surveys of the Lake Superior near-shore fish
community included an average of 49 sites (range = 32—-53) in U.S. waters since 1978

and an average of 30 sites (range = 18—34) in Canadian waters since 1989 (Figure 1).

Yankee bottom-trawls with an 11.9-m head-rope and 12-mm mesh cod end were
towed at a speed of 3.5 km per hour across contours at fixed sampling stations spaced
every ~24 km along the U.S. and Canadian shorelines. Trawling began at a depth of 10—
15 m and progressed in an offshore direction until 60 min elapsed or the trawl reached the
maximum depth that would be attained at the end of 60 min. Trawling targeted all fish
species during daylight hours. Catches from each trawl tow were grouped by species and
measured in total length (mm) and weight (kg). Density (number/ha) and biomass
(kg/ha) were computed from the total number and weight of fish caught and the area
swept by each trawl tow. Data were summarized for each trawl tow (USGS, Lake

Superior Biological Station, Ashland, WI).

Cisco spawning stock size was indexed using catch rates of adult cisco in bottom-
trawls in U.S. and Canadian waters (methods described above), fishery-independent gill-
net surveys in U.S. waters, and targeted commercial fisheries in Canadian waters. Most
agencies with jurisdiction in Lake Superior conducted fishery-independent summer lake
trout surveys with graded-mesh bottom-set gill-nets placed at fixed sampling stations
throughout lake trout management units (Figure 2). Although most surveys did not target

cisco, the species was collected as by-catch (Ebener et al. 2008). Summer surveys were
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conducted in all Wisconsin lake trout management units since 1970 and all Minnesota
and most Michigan lake trout management units since the mid-1980s. The average depth
of summer survey nets was 34 m in Wisconsin (range = 18—61 m), 45 m in Minnesota
(range = 36—57 m), and 46 m in Michigan (range = 15-105 m; Ebener et al. 2008). Soak
times typically ranged 1—4 nights. Catch/effort (CPUE; number/km) was computed from
the number of fish caught and net length. Data were summarized by mesh size and
species for each gill-net gang. Prior to analysis, data were standardized to a soak time of
one night by dividing by total number of nights. Fishery-independent gill-net surveys
were not available for Canadian lake trout management units in Lake Superior (Ebener et
al. 2008), so CPUE in targeted commercial fisheries was used to index cisco spawning
stock size. In Ontario, the commercial cisco fishery was primarily a roe fishery and
relied on floating gill-nets targeting adults during autumn spawning (Yule et al. 2006a).
Commercial operators reported daily total biomass (kg) of cisco harvested, effort (km),
and locations of harvest. Catch/effort (kg/km) was computed from biomass caught and

net length for each gill-net gang in each lake trout management unit (Yule et al. 2006a).

In Lake Superior, most ciscoes mature at 200 mm TL in spring (Hoff 2004) and
250 mm TL in autumn (Dryer and Beil 1964; Yule et al. 2006a). Therefore, cisco
spawning stock size was indexed as the density of fish >200 mm TL in spring bottom-
trawl surveys, CPUE of fish >225 mm TL in summer lake trout surveys, and CPUE of
fish >250 mm TL in autumn targeted commercial fisheries. Total length cut-offs were
applied to density distribution data from spring bottom-trawl surveys to calculate the
density of fish >200 mm TL. Mesh sizes used in summer lake trout surveys varied

among agencies, so only mesh sizes from 2.0 to 2.5-inch stretch-measure were used to
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index cisco spawning stock CPUE. Based on a preliminary analysis of length-frequency
distributions for various mesh sizes, this mesh-size range likely excludes smaller and
larger adult cisco, but is the most appropriate standardized index of cisco spawning stock
size (>225 mm TL) in summer. Mesh sizes used in the Ontario commercial fishery were
not available, but the fishery targeted spawning fish (Yule et al. 2006a), so I assumed that
commercial CPUE appropriately indexed cisco spawning stock size (>250 mm TL) in

autumn.
Spatial Summarization

I defined 11 spatial units in U.S. and Canadian waters of Lake Superior (Figure
3), and calculated summary statistics for each index of recruitment and spawning stock
size in each spatial unit. Spatial units were required to account for different spatial scales
used for data collection and reporting, and were based on regional combinations of whole
(U.S. and Canadian waters) and partial (Canadian waters) lake trout management units
(described above) that loosely corresponded to U.S. Geological Survey Eco-Regions
(Figure 4). For bottom-trawl density and fishery-independent gill-net CPUE, individual
observations were treated as replicate samples and used to calculate summary statistics
for each spatial unit. For targeted commercial fishery CPUE, individual observations
were treated as replicate samples and used to calculate summary statistics for each whole
and partial lake trout management unit. Weighted averages for whole and partial lake
trout management units were then used to calculate summary statistics for each spatial
unit. Weights were based on the area of each whole and partial lake trout management
unit. In two Canadian lake trout management units, targeted commercial fishery CPUE

was sporadic, but was strongly and linearly related to the CPUE from a neighboring unit.
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Therefore, prior to calculating summary statistics for each spatial unit, linear regression
(Zar 1999) was used to predict CPUE for lake trout management units in which targeted

commercial fishery CPUE was not available (Figure 5).

I calculated the geometric mean, coefficient of variation, and relative standard
error for each index of recruitment and spawning stock size in each spatial unit. First, to
account for zero catches, a value equal to /2 the minimum observed density (0.145
fish/ha) was added to each observation of bottom-trawl density and a value of 1.0 was
added to each observation of fishery-independent gill-net or targeted commercial fishery
CPUE. The resulting values were then loge-transformed and used to calculate an
arithmetic average and 95% confidence limits for each spatial unit. The arithmetic
average and 95% confidence limits of the loge-transformed values were then back-
transformed to obtain the geometric mean and back-transformed 95% confidence limits.

The geometric mean ( 1 ), sample size (7 ), and back-transformed upper and lower 95%

confidence limits (U95 and L95 ) were then used to calculate the coefficient of variation

(CV') and relative standard error ( RSE ; Zar 1999):

(U95—L95jxﬁ
CV =

3.92
y7,

. RSE = ((U95 -~ fs)/3.92]

Prediction of Missing Values

In several spatial units, the number of years with CPUE from fishery-independent
gill-net surveys or targeted commercial fisheries was much less than the number of years
with density from bottom-trawling. Missing values were for years in which assessment

gill-net fishing (U.S. waters) or commercial fishing (Canadian waters) did not occur.
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Therefore, a measurement-error model (Fuller 1987) was applied to log.-transformed
relationships between adult cisco density in bottom-trawls and adult cisco CPUE in
fishery-independent gill-net surveys or targeted commercial fisheries to predict missing
gill-net CPUE. A measurement-error model was required for predicting missing gill-net
CPUE, because cisco spawning stock size indexed as density in bottom-trawls and CPUE
in fishery-independent gill-net surveys or targeted commercial fisheries were each
measured with error, thereby making ordinary least-squares regression parameter

estimates biased (Fuller 1987). The measurement-error model was:

- My — OM 4y +\/(myy—5mxx)2 +45mxy2

1

2my,

b, =Y -bX
Where 51 is the bias-corrected slope, m,, is the variance of fishery-independent gill-net or
targeted commercial fishery CPUE, m ,, is the variance of bottom-trawl density, m ,, is the
covariance between gill-net CPUE and bottom-trawl density, ¢ is the measurement-error
ratio, b, is the bias-corrected intercept, Y is the mean of the fishery-independent gill-net or

targeted commercial fishery CPUE, and X is the mean of the bottom-trawl density (Fuller

1987). The measurement-error ratio is calculated from the equation:

— CVgill—net
cr,

trawl

Where CV

et 18 the average CV of fishery-independent gill-net or targeted commercial

fishery CPUE and CV,

ra

. 18 the average CV of bottom-trawl density (Fuller 1987). Bias
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corrected slopes and intercepts were tested for significance (P < 0.05) against null

hypotheses of Z;l =0.0and b, = 0.0 using ¢-tests (Zar 1999):

b,
SE(b,) SE(b,)

Where bias-corrected parameters are as defined above and standard errors ( SE') are as
defined by Fuller (1987). Measurement-error models were only used to predict gill-net
CPUE when the model slope and intercept were both significantly larger than zero (P <
0.05). Years in which bottom-trawl density was zero were not used to estimate
parameters of the measurement-error model. This method was used to predict gill-net

CPUE for three spatial units (Figure 6).

Combined Index of Spawning Stock Size

To index cisco spawning stock size, the geometric mean density of adult cisco in
bottom-trawls was combined with the geometric mean CPUE of adult cisco in fishery-
independent gill-net surveys or targeted commercial fisheries. First, mean density and
CPUE estimates were loge-transformed to meet assumptions of normality (Zar 1999), and
spatial unit averages and standard deviations were calculated from pooled means. All
mean density and CPUE estimates were assumed to be drawn from a standard normal
distribution with average and standard deviation identical to those calculated from pooled

means. Mean density and CPUE estimates were then converted to Z -scores (Zar 1999):
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Where Z is the standardized value calculated for each mean density or CPUE estimate,

X is the mean density or CPUE estimate, u is the average of pooled means for each

spatial unit, and o is the standard deviation of pooled means for each spatial unit (Zar
1999). The Z -scores for each index of cisco spawning stock size were then averaged
across capture methods and back-transformed into units of bottom-trawl density (fish/ha)
using the average and standard deviation calculated from pooled means. In some cases,
back-transformation resulted in estimates of cisco spawning stock size <0.145 fish/ha, so
% the minimum observed bottom-trawl density (0.145 fish/ha) was used to replace each
estimate <0.145 fish/ha. This situation was due to small indices of cisco spawning stock
size in both bottom-trawls and fishery-independent gill-net surveys or targeted

commercial fisheries.
Model Description, Selection, and Validation

To identify and quantify the appropriate spatial scale for modeling age-1 cisco
recruitment dynamics in Lake Superior, estimates of spawner density were paired with
estimates of recruit density two years later, and a sequence of Ricker stock-recruitment
models (Ricker 1975) were fitted to describe varying spatial scales for age-1 cisco
recruitment dynamics in Lake Superior. The Ricker stock-recruitment model describes

recruitment of thei ™ year-class ( R,) as a function of spawning stock size (S, ; Ricker

1975):
R =aSe e’

Where « is the number of recruits produced per spawner at low spawning stock size, 5 is

the rate at which the logarithm of recruits per spawner declines with spawning stock size,
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and e” = multiplicative process error (Ricker 1975). An insignificant S -coefficient
indicates a density-independent recruitment rate, a negative S -coefficient indicates a
compensatory density-dependent recruitment rate, and a positive S -coefficient indicates a

depensatory density-dependent recruitment rate (Hilborn and Walters 1992). Stock-

recruitment errors are usually lognormal (Peterman 1981), so parameters (« and ) were

estimated using linear regression (Zar 1999) and the additive-error loge-transformed

model:

loge(Ri /Sz) = loge(a)_ﬂSz +&

Stock-recruit density estimates were used to fit stock-recruitment curves at five
different spatial scales in Lake Superior. Spatial models included: (1) a 22-parameter
global model (Model 1) where a separate stock-recruitment curve was fit to density
estimates for each of 11 putative stocks; (2) a 2-parameter reduced model (Model 2)
where one stock-recruitment curve was fit to density estimates for the entire lake; (3) a 6-
parameter regional model (Model 3) where separate stock-recruitment curves were fit to
density estimates for western, eastern, and northern stocks; (4) an 8-parameter regional
model (Model 4) where separate stock-recruitment curves were fit to density estimates
for western, southern, eastern, and northern stocks; and (5) an 8-parameter regional
model (Model 5) where separate stock-recruitment curves were fit to density estimates

for a different grouping of western, southern, eastern, and northern stocks (Figure 7).

The most parsimonious model describing age-1 cisco recruitment dynamics in

Lake Superior was selected from the set of candidate models using Akaike’s Information

32



Criterion ( AIC) and likelihood statistics (Anderson et al. 2000; Burnham and Anderson

2002):

AIC =n loge(R—SSj +2K
n

Where n = sample size, RSS = residual sum of squares for each model, and K = number of
parameters estimated for each model (Burnham and Anderson 2002). Because the
number of data points used in model construction was small compared to the number of
model parameters (n/ K < 40) for most (3 of 5) models, a second-order modification of
the AIC statistic ( AIC,) was used for model ranking (Burnham and Anderson 2002):

2K(K +1)

AIC, = AIC +
n—-K-1

All models were ranked relative to the most parsimonious model (lowest AIC,_ value)
based on scaled A/C, values (AA4IC, ), which were calculated as the difference between

the lowest AIC, value ( AIC,

cmin

) and A/C, values of other models. Primary inferences

were drawn from models within 4-7 A4IC, units of AIC

cmin

(Burnham and Anderson

2002). Akaike weights (w,) were calculated to determine the weight of evidence in favor

of each model (Burnham and Anderson 2002).

For the most parsimonious model describing age-1 cisco recruitment dynamics in

Lake Superior, peak recruitment (R__ ) and the spawning stock size that produced peak

max

recruitment (S,

max

) were estimated for each region to show how cisco recruitment differed

among regions. Peak recruitment was estimated as:
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a

R max =
Pe

Where o and f are parameters estimated from the Ricker stock-recruitment model (Ricker

1975; Hilborn and Walters 1992). The spawning stock size that produced peak

recruitment was estimated as:

Smax = l
g

Where £ is the density-dependent parameter estimated from the Ricker stock-recruitment

model (Ricker 1975; Hilborn and Walters 1992).
RESULTS
Spawner and Recruit Density

In years used for model construction, estimates of recruit density varied 102-fold
in Minnesota, 197-fold in WI-1, 2,975-fold in WI-2, 158-fold in Western Keweenaw,
1,424-fold in MI-4, 435-fold in Michigan South Shore, 10-fold in Whitefish Bay, 104-
fold in Eastern Canada, 71-fold in Nipigon Bay, 48-fold in Black Bay, and 276-fold in
Thunder Bay. Average recruit density was greatest in WI-2 (38.1 fish/ha), followed by
MI-4 (11.9 fish/ha), WI-1 (11.2 fish/ha), Michigan South Shore (4.8 fish/ha), Thunder
Bay (4.6 fish/ha), Western Keweenaw (3.1 fish/ha), Nipigon Bay (2.1 fish/ha), Eastern
Canada (1.6 fish/ha), Black Bay (1.4 fish/ha), Minnesota (1.1 fish/ha), and Whitefish Bay
(0.4 fish/ha; Table 1). Based on available density estimates (1978-2007 in U.S. waters

and 1989-2007 in Canadian waters), lake-wide recruitment events occurred in 1984,
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1988-1990, 1998, and 2003. However, relative year-class strength during lake-wide

recruitment events was highly variable among regions (Figures 8—11).

In years used for model construction, estimates of spawner density varied 1.2-fold
in Minnesota, 120-fold in WI-1, 51-fold in WI-2, 19-fold in Western Keweenaw, 94-fold
in MI-4, 6-fold in Michigan South Shore, 8-fold in Whitefish Bay, 5-fold in Eastern
Canada, 7-fold in Nipigon Bay, 17-fold in Black Bay, and 28-fold in Thunder Bay.
Average spawner density was greatest in WI-1 (8.6 fish/ha), followed by MI-4 (3.4
fish/ha), WI-2 (1.9 fish/ha), Thunder Bay (1.2 fish/ha), Black Bay (1.2 fish/ha), Nipigon
Bay (0.5 fish/ha), Western Keweenaw (0.5 fish/ha), Whitefish Bay (0.5 fish/ha), Eastern
Canada (0.4 fish/ha), Michigan South Shore (0.4 fish/ha), and Minnesota (0.2 fish/ha;
Table 2). Based on available density estimates (19782007 in U.S. waters and 1989—
2007 in Canadian waters), spawner densities were generally low prior to 1988, increased

during 1988-1997, and decreased after 1997 (Figures 12-22).

Spatial Scale

Recruitment variation of cisco in Lake Superior was best described by an 8-
parameter regional model (Model 4) with separate stock-recruitment relationships for
western, southern, eastern, and northern stocks (Table 3). Regional stocks included: (1)
Minnesota and WI-1 (Region 1), (2) WI-2, Western Keweenaw, and MI-4 (Region 2), (3)
Michigan South Shore, Whitefish Bay, and Eastern Canada (Region 3), and (4) Nipigon
Bay, Black Bay, and Thunder Bay (Region 4; Figure 7). The 4-stock regional model had
a 96% likelihood of being the correct model of all models considered, was 28-fold more
likely than the second-ranked model, and was 27-fold more likely than all other models

combined. The spatial scale for modeling was ~260 km (range = 230-290 km).
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Model Parameters and Fit

Estimates of the density-independent recruitment rate (& ) and the rate of
compensatory density-dependence ( ) varied among regions at different rates. The
density-independent recruitment rate varied 2-fold among regions and the rate of
compensatory density-dependence varied 21-fold among regions, and were greatest in
Region 3 (& = 4.9 age-1 recruits/spawner and 5= -3.4 spawners "), followed by Region 4
(o = 4.8 age-1 recruits/spawner and = -1.3 spawners '), Region 2 (« = 3.8 age-1
recruits/spawner and 8= -0.5 spawners™), and Region 1 (& = 2.4 age-1 recruits/spawner
and #=-0.2 spawners™; Table 4). Standard errors were relatively large for estimates

of o and small for estimates of 5.

Estimates of peak recruitment ( R__ ) and the spawning stock size that produced

max

peak recruitment (S, ) varied among regions. Peak recruitment varied 10-fold among

max

regions and the spawning stock size that produced peak recruitment varied 21-fold among

regions, and were greatest in Region 1 (R, = 5.4 age-1 recruits/ha and S, = 6.1
spawners/ha), followed by Region 2 (R, = 3.1 age-1 recruits’/ha and S, =2.2
spawners/ha), Region 4 (R_, = 1.3 age-1 recruits’/ha and S, = 0.8 spawners/ha), and
Region 3 (R

= 0.5 age-1 recruits/ha and S, = 0.3 spawners/ha; Table 4; Figure 23).

max

Adjusted R” values were low for both linear and non-linear models for all four regions.
DISCUSSION

My findings are consistent with previously observed regional differences in age-1

cisco year-class strength and regional deviations from normal patterns of recruitment
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synchrony (Ebener et al. 2008; Stockwell et al. 2009), and support the hypothesis that
cisco recruitment is regulated within four different regions of Lake Superior. Previously,
commercial fishery records were used to identify six major cisco spawning stocks
(Selgeby 1982) and eight discrete cisco spawning stocks (Goodyear et al. 1981) in
Wisconsin waters of Lake Superior. More recently, genetically discrete cisco spawning
stocks were identified in Black Bay and Thunder Bay (K. T. Scribner, Michigan State
University, Personal Communication). Therefore, regions identified in my study may

contain multiple discrete cisco spawning stocks.

The spatial scale for modeling age-1 cisco recruitment dynamics in Lake Superior
was 16-fold larger than the average movement distance (16.5 km) and 3-fold larger than
the maximum movement distance (88.5 km) reported for cisco in Lake Michigan (Smith
and Van Oosten 1940), and suggests that large-scale abiotic factors are more important
than small-scale biotic factors in regulating cisco recruitment in Lake Superior.
Compared to the spatial scale of recruitment correlations for other fish species, the spatial
scale for modeling was larger than for other freshwater species (<50 km), smaller than for
marine species (~500 km), and similar to anadromous species and species with estuarine
nursery regions (50-500 km; Myers et al. 1995; Myers et al. 1997; Myers 2001), which
suggests that the effects of large-scale abiotic factors on cisco recruitment in Lake
Superior are less important for other freshwater species, more important for marine
species, and similarly important for anadromous species and species with estuarine
nursery regions. Differences between the spatial scale for modeling and the spatial scale
of recruitment correlations for other freshwater species may be related to the size of Lake

Superior (Lawrie and Rahrer 1973), which is larger than most freshwater lakes, or the
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early life-history characteristics of cisco in Lake Superior (Anderson and Smith 1971,
Scott and Crossman 1973; Becker 1983; Selgeby et al. 1994; Oyadomari and Auer 2004),
which are similar to marine species with planktonic larvae and species with estuarine

nursery regions.

Density-independent recruitment rates estimated in my study were similar to a
previous estimate for cisco in Lake Superior in all four regions, intermediate compared to
estimates for other Great Lakes fish species in all four regions, and relatively constant
among regions. Previously, a density-independent recruitment rate of 5.4 age-1 recruits
per spawner was reported for cisco in Wisconsin waters of Lake Superior (Hoff 2004).
The previously reported rate was greater than rates in my study, but within the range of
estimation errors, which suggests that parameter estimates in my study did not differ
substantially from the previous study. Density-independent recruitment rates for all four
regions in my study were intermediate compared to previously reported rates for alewives
(Alosa pseudoharengus) in Lake Ontario (0.7 age-1 recruits/spawner; O’Gorman et al.
2004) and Lake Michigan (0.5 age-3 recruits/spawner; Madenjian et al. 2005), walleye
(Sander vitreus) in Lake Erie (8.4 age-2 recruits/spawner; Madenjian et al. 1996), and
lake trout in Lake Superior (range = 0.1-3.6 age-7 recruits/spawner; Richards et al. 2004;
Corradin et al. 2008), which suggests that the ability of cisco stocks in Lake Superior to
reproduce at low spawning stock size is intermediate compared to other Great Lakes
species. Relatively constant density-independent recruitment rates among regions in my
study are consistent with previous studies (Myers et al. 1996; Myers et al. 1999) that
found relatively constant within species maximum annual reproductive rates for multiple

freshwater and marine fish stocks, and suggest that the ability to reproduce at low
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spawning stock size may be genetically pre-determined and similar for cisco stocks

throughout Lake Superior.

Rates of compensatory density-dependence estimated in my study were similar to
a previous estimate for cisco in Lake Superior in two of four regions, differed from
estimates for other Great Lakes fish species in three of four regions, and were highly
variable among regions. Previously, a rate of compensatory density-dependence of -0.3
spawners ' was reported for cisco in Wisconsin waters of Lake Superior (Hoff 2004). In
western and southern stocks, the previously reported rate was intermediate compared to
rates in my study and within the range of estimation errors, which suggests that parameter
estimates in my study did not differ substantially from the previous study. In eastern and
northern stocks, the previously reported rate was lower than rates in my study and outside
the range of estimation errors, which suggests that differences in parameter estimates
between my study and the previous study were related to regional differences in
compensatory density-dependence. Rates of compensatory density-dependence for most
(3 of 4) regions in my study were greater than previously reported rates for alewives in
Lake Ontario and Lake Michigan, walleye in Lake Erie, and lake trout in Lake Superior
(range = -0.001 to -0.250 spawners™; Madenjian et al. 1996; O’Gorman et al. 2004;
Richards et al. 2004; Madenjian et al. 2005; Corradin et al. 2008), which suggests that
compensatory density-dependence is more important in regulating cisco recruitment in
Lake Superior than for other Great Lakes species. Highly variable rates of compensatory
density-dependence among regions in my study suggest that large-scale abiotic factors
drive regional differences in age-1 cisco year-class strength and regional deviations from

normal patterns of recruitment synchrony in Lake Superior (Ebener et al. 2008; Stockwell
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et al. 2009) through regional differences in compensatory density-dependence, such as
egg predation (Dryer and Beil 1964; Anderson and Smith 1971; Becker 1983), larval
predation (Pritchard 1931; Becker 1983; Hoff et al. 1997), or competition during the first
year of life (Selgeby et al. 1978; Rudstam et al. 1993; Link et al. 1995; Jensen 1996;

Kinnunen 1997; Pangle et al. 2004).

Estimates of peak recruitment and the spawning stock size that produced peak
recruitment in my study were consistently lower than previous estimates for cisco in Lake
Superior, varied among regions, and were greatest for the most productive (western and
southern) and lowest for the least productive (eastern and northern) regions. Peak
recruitment was lower than a previous estimate for cisco in Wisconsin waters of Lake
Superior (8.0 age-1 recruits/ha; Hoff 2004) in all four regions, varied 10-fold among
regions, and was 5-fold greater for western and southern stocks than eastern and northern
stocks. The spawning stock size that produced peak recruitment was lower than a
previous estimate for cisco in Wisconsin waters of Lake Superior (4.0 spawners/ha; Hoff
2004) in most (3 of 4) regions, varied 21-fold among regions, and was 8-fold greater for
western and southern stocks than eastern and northern stocks. Consistently lower
estimates of peak recruitment and the spawning stock size that produced peak recruitment
in my study suggest that differences between my study and the previous study may be
related to both spatial and temporal differences in the data used for analysis. Regional
differences in peak recruitment and the spawning stock size that produced peak
recruitment in my study suggest that carrying capacity may be an important underlying
factor driving regional differences in rates of compensatory density-dependence for cisco

stocks in Lake Superior.
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I used single-factor stock-recruitment models to identify and quantify the
appropriate spatial scale for modeling age-1 cisco recruitment dynamics in Lake
Superior, but low adjusted R* values for both linear and non-linear models for all four
regions in my study suggest that one or more important variables may be missing from
each regional model. Therefore, future studies of cisco stock-recruitment in Lake
Superior should focus on developing multi-factor stock-recruitment models for regions
identified in my study. Adding multiple biotic and abiotic factors to stock-recruitment
models developed for regions identified in my study may help researchers identify and
quantify the effects of biotic and abiotic factors on age-1 cisco recruitment dynamics in
Lake Superior, generate hypotheses that can be tested in future laboratory and field
studies, and substantially improve model fit. Candidate variables for multi-factor models
should include variables previously correlated to age-1 cisco recruitment or generally
considered to regulate age-1 cisco recruitment in Lake Superior, such as wind speed, air
temperature, slimy sculpin (Cottus cognatus) biomass, lake trout abundance (Hoff 2004),
rainbow smelt (Osmerus mordax) abundance (Anderson and Smith 1971; Walter and
Hoagman 1975; Selgeby et al. 1978; Hrabik et al. 1998; Cox and Kitchell 2004), bloater
(Coregonus hoyi) abundance (Anderson and Smith 1971; Davis and Todd 1992), and the
abundance of other cisco age-classes (Jensen 1996; Bronte et al. 2003; Hoff 2004), and
variables previously correlated to recruitment of other coregonid species in the Great

Lakes, such as ice cover (Taylor et al. 1987; Freeberg et al. 1990; Brown et al. 1993).
MANAGEMENT IMPLICATIONS

The fish-community objective for prey species in Lake Superior calls for

rehabilitation of cisco stocks to historic levels of abundance to provide a forage base for
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lake trout and to support a commercial fishery (Busiahn 1990). Fishery management
plans for the lower Great Lakes recognize the cisco as an important member of the native
fish community and call for reestablishment of self-sustaining populations throughout the
species historic range (Edsall and DeSorcie 2002). Previously, studies of cisco stock-
recruitment in the Great Lakes were limited to one study of cisco stock-recruitment in
Wisconsin waters of Lake Superior (Hoff 2004). The previous study identified and
quantified the effects of multiple biotic and abiotic factors correlated to age-1 cisco
recruitment, but failed to identify or quantify the spatial scale for cisco recruitment
dynamics, and management parameters estimated for cisco stocks in Wisconsin waters of
Lake Superior were not broadly applicable to cisco stocks in other regions of Lake
Superior or the lower Great Lakes. Therefore, fishery managers were forced to carry out
cisco restoration and management efforts without reliable estimates of the spatial scale
for cisco recruitment dynamics and basic management parameters. My findings provide
the first estimate of the spatial scale for cisco recruitment dynamics and the first
comprehensive estimates of basic management parameters for cisco stocks in Lake
Superior, and are broadly applicable to cisco restoration and management efforts

throughout Lake Superior and the entire Great Lakes basin.

My findings suggest that cisco spawning stock size should be maintained near
densities of 6.1 spawners/ha in western stocks, 2.2 spawners/ha in southern stocks, 0.3
spawners/ha in eastern stocks, and 0.8 spawners/ha in northern stocks to produce peak
recruitment of age-1 cisco in Lake Superior. Regional differences in the spawning stock
size required to produce peak recruitment of age-1 cisco in Lake Superior suggest that

fishery managers throughout Lake Superior and the entire Great Lakes basin should
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address cisco restoration and management efforts on a regional scale in each lake. The
spatial scale for modeling age-1 cisco recruitment dynamics in Lake Superior suggests
that regions targeted for cisco restoration and management efforts throughout Lake

Superior and the entire Great Lakes basin should range from 200-300 km.

Estimates of the spawning stock size that produced peak recruitment of age-1
cisco in Lake Superior can be used as targets for the restoration of remnant cisco
populations throughout the lower Great Lakes, but because the productivity and fish-
community structure of Lake Superior differs from many of the lower Great Lakes,
fishery managers should exercise caution when applying management parameters
estimated in my study to the lower Great Lakes. Because of Lake Superior’s low
productivity (Hansen 1990; Horns 2003), fishery managers should consider regional
estimates of the spawning stock size that produced peak recruitment of age-1 cisco in
Lake Superior as minimum targets for the restoration of cisco populations throughout the
lower Great Lakes. Therefore, the spawning stock size that produced peak recruitment of
age-1 cisco in western stocks may be an appropriate minimum target for the restoration of
cisco populations in Lake Ontario, Lake Erie, Lake Huron, and Lake Michigan. Because
the fish-community structure of the lower Great Lakes is dominated by invasive species,
such as the alewife (Fitzsimons and O’Gorman 2006; Stockwell et al. 2009), fishery
managers throughout the lower Great Lakes should also evaluate the potential effects of
increased interspecific predation and competition on cisco populations prior to addressing

cisco restoration and management efforts in each lake.
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Table 1. Summary statistics for estimated recruit densities used in model construction.
Number of years used in model construction ( # ), average (Avg.), minimum (Min.), and
maximum (Max.) recruit density, average coefficient of variation (Avg. CV" ), and

average relative standard error (Avg. RSE) are provided for each spatial unit.

Recruit Density Bottom-Trawls (fish/ha)
Spatial Unit »n Avg. Min. Max. Avg.CV Avg. RSE

MINN 22 1.1 0.2 14.8 2.67 0.89
WI-1 14 11.2 0.2 45.9 110.31 62.24
WI-2 28 38.1 0.2 4313 3.07 0.94
WKEW 16 3.1 0.2 22.9 5.29 2.63
MI-4 26 11.9 0.2 206.5 8.73 4.07
MISS 20 4.8 0.2 63.1 5.79 244
WFBY 11 0.4 0.2 1.5 1.65 0.75
ECAN 12 1.6 0.2 15.1 1.43 0.47
NIPB 17 2.1 0.2 10.2 5.68 2.15
BLKB 17 1.4 0.2 7.0 42.49 21.25
THBY 17 4.6 0.2 40.0 15.40 6.93
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Table 2. Summary statistics for estimated spawner densities used in model construction.
Number of years used in model construction ( # ), average (Avg.), minimum (Min.), and
maximum (Max.) spawner density, average coefficient of variation (Avg. CV Trawls) and
relative standard error (Avg. RSE Trawls) for bottom-trawl density, and average
coefficient of variation (Avg. CV Gill-Nets) and relative standard error (Avg. RSE Gill-

Nets) for gill-net CPUE are provided for each spatial unit.

Spawner Density (fish/ha)

Avg. Avg.

Spatial cv RSE Avg. CV  Avg. RSE

Unit n Avg. Min. Max. Trawls Trawls Gill-Nets Gill-Nets
MINN 22 02 0.2 0.2 0.36 0.13 1.24 0.36
WI-1 14 86 03 362 19.59 10.43 242 0.49
WI-2 28 1.9 02 8.1 4.30 1.31 1.86 0.27
WKEW 16 05 02 2.7 2.39 0.96 1.94 0.56
MI-4 26 34 02 137 13.00 5.05 2.14 0.76
MISS 20 04 02 0.9 6.64 2.71 2.36 0.83
WFBY 11 05 02 1.2 2.50 0.84 77.28 54.17
ECAN 12 04 02 0.7 3.16 0.99 111.76 78.68
NIPB 17 05 02 1.2 4.30 1.68 4.68 2.99
BLKB 17 1.2 02 3.8 9.31 4.66 1.20 0.15
THBY 17 1.2 0.2 4.0 11.97 5.42 0.82 0.14
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Table 3. Comparison of Ricker stock-recruitment models describing age-1 cisco
recruitment dynamics in Lake Superior. Models are ranked in order of scaled second-
order Akaike Information Criterion ( AIC,) values. Akaike weights (w,) can be
interpreted as the probability that a given model is the correct model of all models
considered. The top-ranked model (Model 4) had a 96% likelihood of being the correct
model of all models considered, was 28-fold more likely than the second-ranked model,

and was 27-fold more likely than all other models combined.

Model n Parameters RSS AIC AIC, Scaled AIC, w;

4 200 8 550.02 218.33  219.08 0.00 0.96
5 200 8 568.75 225.02  225.78 6.70  0.03
3 200 6 600.69 231.95 232.39 13.31  0.00
1 200 22 517.71 23422  239.94 20.85  0.00
2 200 2 672.64 246.58 246.64 27.56  0.00
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Table 4. Comparison of regional stock-recruitment curves based on the top-ranked
model describing age-1 cisco recruitment dynamics in Lake Superior. Estimated

parameters (« and £ ) and standard errors ( SE ) are provided, along with peak

), the spawning stock size that produced peak recruitment (S

recruitment ( R o )» and

max

adjusted R* values for both linear and non-linear versions of the Ricker stock-recruitment
model. Differences among regional models were primarily driven by different levels of

compensatory density-dependence in each region.

Adjusted R*  Adjusted R*

Linear Non-Linear
Region a SE p SE  Rumax _ Smax Model Model
MINN
WI-1 24 078 -0.2 0.04 5.4 6.1 0.32 0.09
WI-2
WKEW
MI-4 38 120 -0.5 0.08 3.1 2.2 0.29 0.06
MISS
WFBY
ECAN 49 244 -34 093 0.5 0.3 0.23 0.03
NIPB
BLKB
THBY 48 160 -1.3 0.24 1.3 0.8 0.38 0.05
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Figure 1. Locations of spring bottom-trawl survey stations in Lake Superior. Individual
survey stations are denoted by a unique numeric code. Survey stations in U.S. waters are
numbered <300 and survey stations in Canadian waters are numbered >400 (USGS, Lake

Superior Biological Station, Ashland, WI).
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Figure 2. Locations of lake trout management units in Lake Superior. Jurisdictions in

U.S. waters are denoted by a unique alpha-numeric code (MI = Michigan, WI =
Wisconsin, and MN = Minnesota) and jurisdictions in Canadian waters are denoted by a
unique numeric code (Hansen 1996). In Canadian waters, partial unit boundaries were
added from the northern point of MI-8 east to the Canadian shoreline (unit 33), the
western point of unit 14 northwest to the Canadian shoreline (unit 9), and the tip of the
peninsula between Black Bay and Thunder Bay south to the boundary of MI-1 (unit 6).
Partial unit boundaries were added to loosely correspond to the boundaries of U.S.
Geological Survey Eco-Regions (described below), and were needed for weighting

targeted commercial fishery CPUE used to index cisco spawning stock size.
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Figure 3. Spatial units used for stock-recruitment analysis (Minnesota-MINN
corresponds to a combination of lake trout management units MN-1, MN-2, and MN-3;
WI-1 corresponds to lake trout management unit WI-1; WI-2 corresponds to lake trout
management unit WI-2; Western Keweenaw-WKEW corresponds to a combination of
lake trout management units MI-2 and MI-3; MI-4 corresponds to lake trout management
unit MI-4; Michigan South Shore-MISS corresponds to a combination of lake trout
management units MI-5 and MI-6; Whitefish Bay-WFBY corresponds to a combination
of lake trout management units MI-8, 34, and the southern 63.5% of unit 33; Eastern
Canada-ECAN corresponds to a combination of lake trout management units 23, 24, 26,
28, 29, 31, and the northern 36.5% of unit 33; Nipigon Bay-NIPB corresponds to a
combination of lake trout management units 10, 11, 12, 18, and 19; Black Bay-BLKB
corresponds to a combination of lake trout management unit 7, the eastern 41.2% of unit
6, and the western 28.8% of unit 9; Thunder Bay-THBY corresponds to a combination of

lake trout management units 1, 2, 3, 4, 5, and the western 58.8% of unit 6).
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Lake Superior Eco-Regions
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Ashland .
Sault Ste. Marie

Wisconsin - Michigan

Figure 4. Locations of U.S. Geological Survey (USGS) Eco-Regions in Lake Superior.
Eco-Regions were developed to summarize spring bottom-trawl data based on observed
changes in habitat and fish-community structure (MNNS = Minnesota North Shore; WLS
= Western Lake Superior; APIS = Apostle Islands; WKEW = Western Keweenaw;
EKEW = Eastern Keweenaw; MISS = Michigan South Shore; WFBY = Whitefish Bay;
ECAN = Eastern Canada; WCAN = Western Canada; NIPB = Nipigon Bay; BLKB =
Black Bay; THBY = Thunder Bay; USGS, Lake Superior Biological Station, Ashland,

WI).
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Figure 5. Relationship between targeted commercial fishery CPUE in (a) lake trout
management units 33 and 34, and (b) lake trout management units 33 and 31.
Catch/effort in units 34 and 31 was strongly and linearly related to CPUE in unit 33
(passing through the origin). Linear regression was used to predict CPUE in eight years

for both units 34 and 31.
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Figure 6. Relationship between loge-transformed adult cisco density and CPUE estimates
in (a) bottom-trawls and fishery-independent gill-net surveys in the WI-2 spatial unit, (b)
bottom-trawls and fishery-independent gill-net surveys in the MI-4 spatial unit, and (c)
bottom-trawls and targeted commercial fisheries in the Nipigon Bay spatial unit. All
relationships were significant (P < 0.05) for both the slope and intercept terms.
Measurement-error models were used to predict gill-net CPUE from bottom-trawl density

in 14 years for WI-2, seven years for MI-4, and five years for Nipigon Bay.

53



Figure 7. Regional stock groupings for (a) Model 3, (b) Model 4, and (c) Model 5. Like
colors represent regional groupings for each model. Separate stock-recruitment curves
were fitted to density estimates for each group of spatial units. The top-ranked model
selected by Akaike’s Information Criterion ( A/C ) and likelihood statistics was Model 4.
Regions identified for modeling were 230 km (Minnesota and WI-1), 240 km (WI-2,
Western Keweenaw, and MI-4), 270 km (Michigan South Shore, Whitefish Bay, and
Eastern Canada), and 290 km (Nipigon Bay, Black Bay, and Thunder Bay) measured at

the widest point.
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Figure 8. Geometric mean density of the 1979-2006 year-classes of cisco in (a)
Minnesota and (b) WI-1 waters of Lake Superior. Years correspond to year of hatching.
Density was indexed at age-1. Vertical bars represent standard errors and may be

truncated due to scale.
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Figure 9. Geometric mean density of the 1979-2006 year-classes of cisco in (a) WI-2,
(b) Western Keweenaw, and (c) MI-4 waters of Lake Superior. Years correspond to year
of hatching. Density was indexed at age-1. Vertical bars represent standard errors and
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Figure 10. Geometric mean density of the 1979—2006 year-classes of cisco in (a)
Michigan South Shore, (b) Whitefish Bay, and (c) Eastern Canada waters of Lake
Superior. Years correspond to year of hatching. Density was indexed at age-1. Vertical

bars represent standard errors and may be truncated due to scale.

57



25

(a)

20

Recruit Density (fish/ha)

S & F S S S
Year

__ 104

©

£ (b)

<

£ 8-

i)

=

2 6

[72]

o

a 4

=

/

q’ <

14

0 17
> 9 O & & & > ® XS I X
B F PP S & & F F S

Year

__ 100

1]

< (c)

£ 80

il

=

2 60

7]

c

g w0 1

=

gzo—

mo — .,v*,%/\ﬁ/\l_;,\i—*ﬁ
@ O & X B D D N> L XSO O ®
AR S MM SR M) (190 ()9@ (190 §

Year
Figure 11. Geometric mean density of the 1979-2006 year-classes of cisco in (a)
Nipigon Bay, (b) Black Bay, and (c¢) Thunder Bay waters of Lake Superior. Years
correspond to year of hatching. Density was indexed at age-1. Vertical bars represent

standard errors and may be truncated due to scale.
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Figure 12. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
Minnesota waters of Lake Superior estimated using (a) spring bottom-trawls, (b) fishery-
independent gill-net surveys, and (c) combined spring bottom-trawls and fishery-
independent gill-net surveys. Vertical bars represent standard errors and may be
truncated due to scale. Years provided correspond to year of hatching for year-classes

produced during 1979-2006.
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Figure 13. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
WI-1 waters of Lake Superior estimated using (a) spring bottom-trawls, (b) fishery-
independent gill-net surveys, and (c) combined spring bottom-trawls and fishery-
independent gill-net surveys. Vertical bars represent standard errors and may be
truncated due to scale. Years provided correspond to year of hatching for year-classes

produced during 1979-2006.
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Figure 14. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
WI-2 waters of Lake Superior estimated using (a) spring bottom-trawls, (b) fishery-
independent gill-net surveys, and (c) combined spring bottom-trawls and fishery-
independent gill-net surveys. Vertical bars represent standard errors and may be
truncated due to scale. Years provided correspond to year of hatching for year-classes

produced during 1979-2006. In panel (b), points without error bars are predicted values.
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Figure 16. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
MI-4 waters of Lake Superior estimated using (a) spring bottom-trawls, (b) fishery-
independent gill-net surveys, and (c) combined spring bottom-trawls and fishery-
independent gill-net surveys. Vertical bars represent standard errors and may be
truncated due to scale. Years provided correspond to year of hatching for year-classes

produced during 1979-2006. In panel (b), points without error bars are predicted values.
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Figure 17. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
Michigan South Shore waters of Lake Superior estimated using (a) spring bottom-trawls,
(b) fishery-independent gill-net surveys, and (c) combined spring bottom-trawls and
fishery-independent gill-net surveys. Vertical bars represent standard errors and may be
truncated due to scale. Years provided correspond to year of hatching for year-classes

produced during 1979-2006.
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Figure 19. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
Eastern Canada waters of Lake Superior estimated using (a) spring bottom-trawls, (b)
targeted commercial fisheries, and (c) combined spring bottom-trawls and targeted
commercial fisheries. Vertical bars represent standard errors and may be truncated due to
scale. Years provided correspond to year of hatching for year-classes produced during

1979-2006.
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Figure 20. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
Nipigon Bay waters of Lake Superior estimated using (a) spring bottom-trawls, (b)
targeted commercial fisheries, and (c) combined spring bottom-trawls and targeted
commercial fisheries. Vertical bars represent standard errors and may be truncated due to
scale. Years provided correspond to year of hatching for year-classes produced during

1979-2006. In panel (b), points without error bars are predicted values.
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Figure 21. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
Black Bay waters of Lake Superior estimated using (a) spring bottom-trawls, (b) targeted
commercial fisheries, and (c) combined spring bottom-trawls and targeted commercial
fisheries. Vertical bars represent standard errors and may be truncated due to scale.
Years provided correspond to year of hatching for year-classes produced during 1979—

2006.
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Figure 22. Spawning stock sizes that produced the 1979-2006 year-classes of cisco in
Thunder Bay waters of Lake Superior estimated using (a) spring bottom-trawls, (b)
targeted commercial fisheries, and (c) combined spring bottom-trawls and targeted
commercial fisheries. Vertical bars represent standard errors and may be truncated due to
scale. Years provided correspond to year of hatching for year-classes produced during

1979-2006.
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Chapter 2:
Biotic and Abiotic Factors Regulating Cisco Recruitment Dynamics

in Lake Superior during 1978-2007

Abstract — The cisco (Coregonus artedi) was once the most abundant fish species in the
Great Lakes, but currently, cisco populations are greatly reduced, and management
agencies are attempting to restore the species throughout the basin. To increase
understanding of biotic and abiotic factors regulating cisco recruitment dynamics in the
Great Lakes, I used a generalized version of the Ricker stock-recruitment model to
identify and quantify the effects of biotic and abiotic factors on age-1 cisco recruitment
dynamics within four different regions of Lake Superior. I found that recruitment
variation of cisco in Lake Superior was correlated to adult spawning stock size in all four
regions, the density of juvenile cisco during the year prior to cisco hatching in three of
four regions, average April air temperature during spring when ciscoes were 11-12
months of age in three of four regions, average April wind speed during spring when
ciscoes were hatching in two of four regions, and the biomass of rainbow smelt during
the year of cisco hatching in one of four regions. My findings support the hypothesis that
different biotic and abiotic factors regulate cisco recruitment within different regions of
Lake Superior, suggest that air temperature during spring when ciscoes are 11—-12 months
of age drives recruitment variation on a lake-wide scale, whereas adult spawning stock
size, intraspecific interactions with juvenile cisco, wind speed during spring when ciscoes
are hatching, and interspecific interactions with rainbow smelt regulate recruitment

variation on a regional scale in Lake Superior, and suggest that fishery managers
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throughout Lake Superior and the entire Great Lakes basin should evaluate the potential
effects of similar biotic and abiotic factors on recruitment prior to addressing cisco

restoration and management efforts in each lake.
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INTRODUCTION

Historically, the cisco (Coregonus artedi) was the most abundant fish species in
the Great Lakes (Smith 1995), but by the mid-1900s, cisco populations were greatly
reduced throughout the basin (Fitzsimons and O’Gorman 2006). Over-fishing, habitat
degradation, and interactions with exotic species caused cisco yield to decline by 80-99%
in each lake (Edsall and DeSorcie 2002; Baldwin et al. 2006; Fitzsimons and O’Gorman
2006). Declining yields forced commercial fishers to target other species and brought
about new regulations designed to prevent further losses, but except for a few strong
year-classes in the 1990s, cisco stocks failed to recover in the lower Great Lakes
(Fitzsimons and O’Gorman 2006). Reduced commercial fishing pressure enabled cisco
to recover in portions of Lake Superior, but historic stock structure was altered
(Goodyear et al. 1981; Selgeby 1982; Horns 2003), and abundance is now driven by
highly erratic age-1 recruitment and few year-classes of adults (Bronte et al. 2003; Hoff
2004). Management agencies have begun exploring the feasibility of restoring cisco
stocks throughout Lake Superior and the entire Great Lakes basin, but limited
understanding of factors that drive recruitment variation and the spatial scale at which
these factors operate remain barriers to establishing self-sustaining populations (Hoff
2004; Fitzsimons and O’Gorman 2006). Identifying major density-independent and
density-dependent factors that regulate age-1 cisco recruitment dynamics in Lake
Superior, and the spatial scale at which these factors operate, would be invaluable to
cisco restoration and management efforts throughout Lake Superior and the entire Great
Lakes basin. A comprehensive analysis of cisco stock-recruitment in Lake Superior can

provide a framework for addressing these questions.
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The stock-recruitment relationship quantifies the ability of a fish stock to replace
itself over a range of spawning stock sizes (Koslow 1991; Hilborn and Walters 1992),
and is essential to many models used to estimate optimal fishing strategies (Koslow
1991). However, the stock-recruitment relationship is often obscured by the effects of
environmental variation, thereby causing recruitment to appear independent of spawning
stock size (Ricker 1975; Koslow 1991; Hilborn and Walters 1992). Recruitment can be
indexed at any life stage, but for many fish stocks, recruitment is established within the
first year of life, primarily during egg and larval stages (Ricker 1975). Spawning stock
size and environmental variation collectively determine egg and larval survival through
density-dependent and density-independent mechanisms (Ricker 1975; Koslow 1991;
Hilborn and Walters 1992). When annual variation in recruitment is driven by
environmental variables, multi-factor stock-recruitment models can be used to quantify
the separate effects of environmental variation and spawning stock size on recruitment

(Ricker 1975; Walters et al. 1986; Madenjian et al. 1996; Hansen et al. 1998; Hoff 2004).

Cisco recruitment is not limited by habitat at any historic spawning sites in Lake
Superior (Horns 2003). Over-fishing of discrete stocks (Selgeby 1982; Bronte et al.
2003) and interactions with rainbow smelt (Osmerus mordax; Anderson and Smith 1971;
Selgeby et al. 1978; Cox and Kitchell 2004) are generally considered the two most likely
factors contributing to cisco declines during the mid-1900s. Many studies have
attempted to identify factors driving contemporary age-1 cisco recruitment dynamics in
Lake Superior, but most have provided inconclusive or conflicting results. Factors that
may regulate contemporary age-1 cisco recruitment include adult spawning stock size

(Bronte et al. 2003; Horns 2003; Hoff 2004), commercial fishing mortality (Selgeby
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1982), intraspecific and interspecific interactions (Dryer and Beil 1964; Dryer et al. 1965;
Anderson and Smith 1971; Berst and Spangler 1973; Selgeby et al. 1978; Jensen 1996;
Bronte et al. 2003; Horns 2003; Cox and Kitchell 2004; Hoff 2004), and environmental
variation (Kinnunen 1997; Bronte et al. 2003; Hoff 2004). Highly synchronous, lake-
wide recruitment events suggest that large-scale abiotic factors drive recruitment
variation on a lake-wide scale, whereas small-scale biotic factors regulate recruitment
variation on a regional scale in Lake Superior (Kinnunen 1997; Bronte et al. 2003;

Stockwell et al. 2009).

My objective was to identify and quantify the effects of biotic and abiotic factors
on age-1 cisco recruitment dynamics in Lake Superior at spatial scales identified in
Chapter 1. Tused a generalized version of the Ricker stock-recruitment model (Ricker
1975; Hilborn and Walters 1992) to identify and quantify the effects of biotic and abiotic
factors on age-1 cisco recruitment dynamics within four different regions of Lake
Superior. Iexpected to find a significant positive effect on age-1 cisco recruitment from
wind speed during spring when ciscoes were hatching, and air temperature during spring
when ciscoes were 11-12 months of age, because a previous study (Hoff 2004) showed
that these factors were correlated to age-1 cisco recruitment in Lake Superior. I also
expected to find a significant negative effect on age-1 cisco recruitment from slimy
sculpin (Cottus cognatus) biomass during the year prior to cisco hatching, and lake trout
(Salvelinus namaycush) biomass during the year of cisco hatching, because a previous
study (Hoff 2004) showed that these factors were correlated to age-1 cisco recruitment in
Lake Superior. Additionally, I expected to find significant negative effects on age-1

cisco recruitment from juvenile cisco density and rainbow smelt biomass during the year
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of cisco hatching, because intraspecific interactions with other cisco age-classes and
interspecific interactions with rainbow smelt are generally considered to limit age-1 cisco
recruitment in Lake Superior (Anderson and Smith 1971; Selgeby et al. 1978; Jensen
1996; Bronte et al. 2003; Horns 2003; Cox and Kitchell 2004; Hoff 2004; Ebener et al.
2008; Stockwell et al. 2009). Finally, I expected to find that different variables explained
variation in recruitment within different regions, because age-1 cisco recruitment has
previously been observed to vary regionally in Lake Superior (Ebener et al. 2008;

Stockwell et al. 2009).
METHODS
Study Area

Lake Superior is located near the head of the St. Lawrence River drainage, and is
bordered by one Canadian province to the north (Ontario) and three U.S. states to the
south (Michigan, Wisconsin, and Minnesota). A surface area of 8.24-million ha and a
volume of 12,233 km® make Lake Superior the largest of the Great Lakes (Lawrie and
Rahrer 1973). Lake Superior is highly oligotrophic (Hansen 1990). Primary production
is near the low end of the range for freshwater lakes, so commercial fish production per
unit of surface area is lower than in all other Great Lakes (Hansen 1990; Horns 2003).
The native fish community of Lake Superior included 73 species in 18 families (Lawrie
1978), but biomass was dominated by lake trout, lake whitefish (Coregonus
clupeaformis), cisco, and several species of related deepwater chubs (Coregonus spp.;
Hansen 1990). Lake Superior has been little affected by point or non-point source
pollution. The greatest influences from human development have been over-fishing and

introductions of exotic species (Lawrie and Rahrer 1973).
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Cisco Recruitment and Spawning Stock Size

Cisco recruitment was indexed using catch rates of age-1 cisco in spring bottom-
trawl surveys when fish were 13—14 months of age and <140 mm total length (TL; Hoff
2004). Large cisco year-classes typically include a significant number of individuals
>140 mm TL (USGS, Lake Superior Biological Station, Ashland, WI), so length-
frequency distributions were examined and the TL cut-off was adjusted to include all
age-1 individuals. Spring bottom-trawl surveys of the Lake Superior near-shore fish
community included an average of 49 sites (range = 32—-53) in U.S. waters since 1978

and an average of 30 sites (range = 18—34) in Canadian waters since 1989 (Figure 1).

Yankee bottom-trawls with an 11.9-m head-rope and 12-mm mesh cod end were
towed at a speed of 3.5 km per hour across contours at fixed sampling stations spaced
every ~24 km along the U.S. and Canadian shorelines. Trawling began at a depth of 10—
15 m and progressed in an offshore direction until 60 min elapsed or the trawl reached the
maximum depth that would be attained at the end of 60 min. Trawling targeted all fish
species during daylight hours. Catches from each trawl tow were grouped by species and
measured in total length (mm) and weight (kg). Density (number/ha) and biomass
(kg/ha) were computed from the total number and weight of fish caught and the area
swept by each trawl tow. Data were summarized for each trawl tow (USGS, Lake

Superior Biological Station, Ashland, WI).

Cisco spawning stock size was indexed using catch rates of adult cisco in bottom-
trawls in U.S. and Canadian waters (methods described above), fishery-independent gill-
net surveys in U.S. waters, and targeted commercial fisheries in Canadian waters. Most

agencies with jurisdiction in Lake Superior conducted fishery-independent summer lake
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trout surveys with graded-mesh bottom-set gill-nets placed at fixed sampling stations
throughout lake trout management units (Figure 2). Although most surveys did not target
cisco, the species was collected as by-catch (Ebener et al. 2008). Summer surveys were
conducted in all Wisconsin lake trout management units since 1970 and all Minnesota
and most Michigan lake trout management units since the mid-1980s. The average depth
of summer survey nets was 34 m in Wisconsin (range = 18—61 m), 45 m in Minnesota
(range = 36—57 m), and 46 m in Michigan (range = 15-105 m; Ebener et al. 2008). Soak
times typically ranged 1—4 nights. Catch/effort (CPUE; number/km) was computed from
the number of fish caught and net length. Data were summarized by mesh size and
species for each gill-net gang. Prior to analysis, data were standardized to a soak time of
one night by dividing by total number of nights. Fishery-independent gill-net surveys
were not available for Canadian lake trout management units in Lake Superior (Ebener et
al. 2008), so CPUE in targeted commercial fisheries was used to index cisco spawning
stock size. In Ontario, the commercial cisco fishery was primarily a roe fishery and
relied on floating gill-nets targeting adults during autumn spawning (Yule et al. 2006a).
Commercial operators reported daily total biomass (kg) of cisco harvested, effort (km),
and locations of harvest (Yule et al. 2006a). Catch/effort (kg/km) was computed from
biomass caught and net length for each gill-net gang in each lake trout management unit

(Yule et al. 2006a).

In Lake Superior, most ciscoes mature at 200 mm TL in spring (Hoff 2004) and
250 mm TL in autumn (Dryer and Beil 1964; Yule et al. 2006a). Therefore, cisco
spawning stock size was indexed as the density of fish >200 mm TL in spring bottom-

trawl surveys, CPUE of fish >225 mm TL in summer lake trout surveys, and CPUE of
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fish >250 mm TL in autumn targeted commercial fisheries. Total length cut-offs were
applied to density distribution data from spring bottom-trawl surveys to calculate the
density of fish >200 mm TL. Mesh sizes used in summer lake trout surveys varied
among agencies, so only mesh sizes from 2.0 to 2.5-inch stretch-measure were used to
index cisco spawning stock CPUE. Based on a preliminary analysis of length-frequency
distributions for various mesh sizes, this mesh-size range likely excludes smaller and
larger adult cisco, but is the most appropriate standardized index of cisco spawning stock
size (>225 mm TL) in summer. Mesh sizes used in the Ontario commercial fishery were
not available, but the fishery targeted spawning fish (Yule et al. 2006a), so I assumed that
commercial CPUE appropriately indexed cisco spawning stock size (>250 mm TL) in

autumn.

I calculated summary statistics for each index of recruitment and spawning stock
size in 11 pre-defined spatial units in U.S. and Canadian waters of Lake Superior using
methods described in Chapter 1 (Figure 3). Spatial units were required to account for
different spatial scales used for data collection and reporting, and were based on regional
combinations of whole (U.S. and Canadian waters) and partial (Canadian waters) lake
trout management units (described above) that loosely corresponded to U.S. Geological
Survey Eco-Regions (Chapter 1). Summary statistics included the geometric mean ( u ),
coefficient of variation (CV ), relative standard error ( RSE ), and a combined index of
spawning stock size with units of bottom-trawl density (fish/ha), which was calculated by
combining the geometric mean density of adult cisco in bottom-trawls and the geometric
mean CPUE of adult cisco in fishery-independent gill-net surveys or targeted commercial

fisheries (Zar 1999; Chapter 1). To account for zero catches, a value equal to '4 the
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minimum observed density (0.145 fish/ha) was added to each observation of bottom-
trawl density and a value of 1.0 was added to each observation of fishery-independent
gill-net or targeted commercial fishery CPUE prior to calculating summary statistics
(Chapter 1). In several spatial units, the number of years with CPUE from fishery-
independent gill-net surveys (U.S. waters) or targeted commercial fisheries (Canadian
waters) was much less than the number of years with density from bottom-trawling.
Therefore, prior to calculating summary statistics for each spatial unit, a measurement-
error model (Fuller 1987) was applied to log.-transformed relationships between adult
cisco density in bottom-trawls and adult cisco CPUE in fishery-independent gill-net

surveys or targeted commercial fisheries to predict missing gill-net CPUE (Chapter 1).
Predators and Competitors

Because recruitment of age-1 cisco in Lake Superior may be regulated by
predators and competitors, the density and biomass of predators and competitors were
indexed using catch rates in spring bottom-trawl surveys (methods described above).
Juvenile cisco (age-1 and sub-adult), a potential source of egg predation, age-0 predation,
and competition (based on studies of adults; Pritchard 1931; Dryer and Beil 1964;
Anderson and Smith 1971; Jensen 1996; Hoff et al. 1997; Hoff 2004), were indexed as
(1) the density of fish <140 mm TL (age-1; Hoff 2004) during the year prior to cisco
hatching ( A1CISS ), (2) the density of fish <140 mm TL during the year of cisco hatching
(A1CISH ), (3) the density of fish >140 and <200 mm TL (sub-adult; USGS, Lake
Superior Biological Station, Ashland, WI) during the year prior to cisco hatching
(SACISS ), and (4) the density of fish >140 and <200 mm TL during the year of cisco

hatching (SACISH ). Slimy sculpin, a potential source of egg predation (Anderson and

80



Smith 1971; Hoff 2004), were indexed as the biomass of fish during the year prior to
cisco hatching ( SSBI/ ). Rainbow smelt, a potential source of age-0 predation and
competition, were indexed as (1) the density of fish <100 mm TL (USGS, Lake Superior
Biological Station, Ashland, WI) during the year after cisco hatching ( SMLR ;
competition from rainbow smelt recruits during the year of cisco hatching; Anderson and
Smith 1971) and (2) the biomass of fish during the year of cisco hatching ( SMLBH ; age-
0 predation and competition from age-1+ rainbow smelt; Anderson and Smith 1971;
Selgeby et al. 1978; Hrabik et al. 1998; Cox and Kitchell 2004). Bloater (Coregonus
hoyi), a potential source of competition, were indexed as (1) the density of fish <130 mm
TL (USGS, Lake Superior Biological Station, Ashland, WI) during the year after cisco
hatching ( BLTR ; competition from bloater recruits during the year of cisco hatching;
Anderson and Smith 1971; Davis and Todd 1992) and (2) the biomass of fish during the
year of cisco hatching ( BLTBH ; competition from age-1+ bloater; Anderson and Smith
1971). Lake trout, a potential source of age-0 predation (Edsall and DeSorcie 2002; Hoff
2004; Fitzsimons and O’Gorman 2006), were indexed as the biomass of fish during the
year of cisco hatching (LTBH ). Summary statistics were calculated for each index of
density and biomass using methods described above for bottom-trawls. If biomass was
used instead of density, a value equal to 42 the minimum observed biomass (0.0001
kg/ha) was added to each observation to account for zero catches in place of %2 the

minimum observed density (0.145 fish/ha).

Temperature and Wind Speed

Because recruitment of age-1 cisco in Wisconsin waters of Lake Superior was

previously correlated to air temperature and wind speed (Hoff 2004), average air
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temperature (°F; used as a surrogate for water temperature) and average wind speed
(mph) were indexed using data from the National Oceanic and Atmospheric
Administration (NOAA) National Climatic Data Center (NCDC) online database

(http://www.ncdc.noaa.gov/oa/ncdc.html). The two data products used in my study were

(1) Surface Data U.S. Monthly and (2) Surface Data Global Summary of the Day. The
Surface Data U.S. Monthly product was used to index (1) average April air temperature
during spring when ciscoes were hatching ( A4TH ), when sub-optimal temperatures
were hypothesized to magnify the effects of predation and competition or prevent
individuals from reaching adequate size for over-winter survival (Kinnunen 1997; Edsall
and DeSorcie 2002; Pangle et al. 2004), and (2) average April air temperature during
spring when ciscoes were 11-12 months of age ( AATFY ), when sub-optimal
temperatures may place additional stress on new recruits following severe winters
(Kinnunen 1997; Hoff 2004; Pangle et al. 2004). The Surface Data Global Summary of
the Day product was used to index average air temperature (described above) and average
April wind speed during spring when ciscoes were hatching ( AAWH ), when increased
wind speeds may limit age-0 predation or mediate age-0 survival through transport to
optimal or sub-optimal waters for growth and development (Hoft 2004; Oyadomari and
Auer 2004). For the Surface Data Global Summary of the Day product, daily averages
were used to calculate monthly averages for both temperature and wind speed. Monthly
averages were only calculated when >20 days of observations were present in a given
month. In most cases, monthly averages were calculated from a complete monthly series
of observations or a monthly series missing 1-2 days of observations. All averages were

calculated as arithmetic averages.
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In U.S. waters, average air temperature was obtained from the Surface Data U.S.
Monthly product and average wind speed was obtained from the Surface Data Global
Summary of the Day product, whereas in Canadian waters, both average air temperature
and average wind speed were obtained from the Surface Data Global Summary of the
Day product. In some months, average air temperature from the Surface Data U.S.
Monthly product was not available, so values from the same monitoring station and the
Surface Data Global Summary of the Day product were used to fill in missing values (i.e.
two different products were reported for the same monitoring station, so missing values
for one product were obtained from the other product). Temperature values covering the
required temporal distribution for analysis were available for nine monitoring stations
along the U.S. and Canadian shorelines of Lake Superior (Figure 4), whereas wind speed
values covering the required temporal distribution for analysis were available for six
monitoring stations (Figure 5). Temperature and wind speed values were assigned to
spatial units (described above) from the nearest monitoring station. Where multiple wind
speed monitoring stations were similar distances from a spatial unit, wind speed values

from the western-most station were assigned to the spatial unit.
Ice Cover

Because cisco hatching date may depend on spring ice cover (John and Hasler
1956), and recruitment of other coregonid species in the Great Lakes has been positively
correlated to ice cover during the incubation period (Taylor et al. 1987; Freeberg et al.
1990; Brown et al. 1993), ice cover was indexed using Great Lakes Environmental
Research Laboratory (GLERL, Ann Arbor, MI) ice cover records. The Great Lakes

Environmental Research Laboratory maintains records of historic ice cover for the entire
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Great Lakes region. Ice cover records were available in ~2.5 km resolution Arc/Info
ASCII grid format for winters during 1973-2005 (Assel 2005). Yearly data included
geo-referenced dates of first reported ice, last reported ice, and ice duration for each
winter, reported at nine different threshold concentrations (10-90% ice cover in 10%
increments; Assel et al. 2002). Due to a high degree of correlation, only dates of last
reported ice cover for the 50% threshold concentration were used for analysis. All ASCII
grids were converted to Environmental Systems Research Institute (ESRI, Redlands, CA)
Arc/Info digital raster graphic (DRG) files (Figure 6) using Python programming

language (Python Software Foundation, Hampton, NH).

Once ASCII grids were converted to Arc/Info DRG files, they were loaded into
ArcMap (ESRI, Redlands, CA) and an overlay analysis was conducted for each year.
ArcMap shapefiles containing point data for each bottom-trawl station (described above)
and polygon data for the entire Lake Superior shoreline were loaded into ArcMap.
Bottom-trawl stations were buffered to 16.5 km (average movement distance of cisco in a
Lake Michigan tagging study; Smith and Van Oosten 1940) to create an ArcMap
shapefile containing circular polygons (radius = 16.5 km) for each bottom-trawl station.
The resulting file was then clipped to the boundary of the Lake Superior shoreline to
create a new shapefile only covering the body of Lake Superior (Figure 7). The new
shapefile was then split into multiple shapefiles to prevent overlap of polygons attributed
to spatially distinct bottom-trawl stations (i.e. buffered bottom-trawl station polygons
overlapped, so multiple shapefiles were used to avoid overlap during data extraction).
The resulting shapefiles (9 total) were then loaded into ArcView (ESRI, Redlands, CA)

and converted to Arc/Info DRG files (9 total) with grid extent and coordinate system
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identical to Great Lakes Environmental Research Laboratory ice cover grids. These new
Arc/Info DRG files were then loaded back into ArcMap and overlaid on each ice cover

grid for each year (Figure 7).

Ice cover data corresponding to each ~2.5 km Great Lakes Environmental
Research Laboratory grid within each bottom-trawl station buffer area were extracted
using the Spatial Analyst — Extraction — Sample extension of ArcToolbox (ESRI,
Redlands, CA). A geometric mean for the last day of 50% ice cover was then calculated
for each bottom-trawl station and year based on 16.5 km buffer zones. First, to account
for zero days of 50% ice cover (i.e. in some years 50% ice cover was not reached), a
value of 1.0 was added to each observation. The resulting values were then loge-
transformed and used to calculate an arithmetic average for each bottom-trawl station.
The arithmetic average of the log.-transformed values was then back-transformed to
obtain the geometric mean (Zar 1999). Geometric mean last day of 50% ice cover values
for each bottom-trawl station were then used to calculate a geometric mean last day of
50% ice cover value for each spatial unit (described above). The resulting geometric
mean last day of 50% ice cover values ( LST50H ) for each spatial unit were paired with

density estimates for cisco recruits hatched during the spring of the same year.

Model Description, Selection, and Validation

To identify and quantify the effects of biotic and abiotic factors on age-1 cisco
recruitment dynamics in Lake Superior at spatial scales identified in Chapter 1, estimates
of spawner density (from the combined index of spawning stock size) were paired with
estimates of recruit density two years later, and a sequence of generalized Ricker stock-

recruitment models (Ricker 1975; Hilborn and Walters 1992) were fitted to test biotic and
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abiotic variables for their explanation of overall age-1 cisco recruitment variation within
four different regions of Lake Superior (Figure 8). The generalized version of the Ricker
stock-recruitment model describes recruitment of thei ™ year-class ( R,) as a function of
spawning stock size (.S;) and other biotic or abiotic factors (X, ; Walters et al. 1986;

Hilborn and Walters 1992):
R =aSe ™ %

Where « is the number of recruits produced per spawner at low spawning stock size, 5 is
the rate at which the logarithm of recruits per spawner declines with spawning stock
size, 0 is the rate at which the logarithm of recruits per spawner changes with other biotic
or abiotic factors, and e” = multiplicative process error (Hilborn and Walters 1992). An
insignificant f -coefficient indicates a density-independent recruitment rate, a negative £ -
coefficient indicates a compensatory density-dependent recruitment rate, and a

positive £ -coefficient indicates a depensatory density-dependent recruitment rate
(Hilborn and Walters 1992). An insignificant ¢ -coefficient indicates no other biotic or
abiotic effect on recruitment rate, a negative o -coefficient indicates a negative other
biotic or abiotic effect on recruitment rate, and a positive o -coefficient indicates a
positive other biotic or abiotic effect on recruitment rate (Hilborn and Walters 1992).
Stock-recruitment errors are usually lognormal (Peterman 1981), so parameters (& , 5,
and 0 ) were estimated using multiple-linear regression (Zar 1999) and the additive-error

loge-transformed model:

log, (R, /S,) = log, (a) ~ fiS, ~ X, + ¢
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All biotic and abiotic variables were selected for final multi-factor models using a
two-phase process. First, because of the large number of variables (7= 15) and possible
two-way interaction terms between variables used for analysis (# = 105), and to eliminate
spurious variables and variables weakly correlated to age-1 cisco recruitment, simple-
linear regression (Zar 1999) was used to test for a significant (P < 0.20) relationship
between the logarithm of cisco recruits per spawner and all biotic and abiotic variables.
During the first phase of analysis, significant positive relationships between the logarithm
of cisco recruits per spawner and biotic variables appeared to be a byproduct of sporadic
consecutive years of strong cisco recruitment or related to some large-scale abiotic factor
driving recruitment of multiple species, so insignificant (P > 0.20) variables and
significant biotic variables positively correlated to the logarithm of cisco recruits per
spawner were eliminated from further analysis. Second, stepwise selection (Zar 1999;
SYSTAT 2004) was used to select all best-fit models from significant candidate variables
and all possible two-way interaction terms between significant candidate variables. For
each region, partial correlations between explanatory variables (including interaction
terms) and residuals were tested at each step for entry to (Penery < 0.10) or exit from (Peyic
> 0.10) final models. Modeling was stopped when significant improvements in model fit
were not observed by adding or deleting additional variables (Zar 1999; SYSTAT 2004).
Additional variables were not included in models if they were highly correlated (Pearson
correlation coefficient >0.50) to variables already included in models (i.e. main effects or
interaction terms added to models first or deleted from models last) or if tolerances were

<0.10 (SYSTAT 2004). Normal probability plots (SYSTAT 2004) and time-series plots
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(Hilborn and Walters 1992) were used to assess the normality and independence of

residuals for each model.

For each regional best-fit model describing age-1 cisco recruitment dynamics in

Lake Superior, peak recruitment (R__ ) and the spawning stock size that produced peak

max

recruitment (S

max

) were estimated to show how cisco recruitment differed among

regions. Peak recruitment was estimated as:

Where « and £ are parameters estimated from the Ricker stock-recruitment model (Ricker

1975; Hilborn and Walters 1992). The spawning stock size that produced peak

recruitment was estimated as:

Where £ is the density-dependent parameter estimated from the Ricker stock-recruitment

model (Ricker 1975; Hilborn and Walters 1992).

RESULTS

Spawner and Recruit Density

In years used for model construction, estimates of recruit density ranged 317-fold
in western stocks, 2,975-fold in southern stocks, 435-fold in eastern stocks, and 276-fold
in northern stocks, whereas estimates of spawner density ranged 249-fold in western
stocks, 94-fold in southern stocks, 8-fold in eastern stocks, and 28-fold in northern

stocks. Average recruit density was greatest in southern stocks (20.4 fish/ha), followed

88



by western stocks (5.0 fish/ha), eastern stocks (2.8 fish/ha), and northern stocks (2.7
fish/ha; Table 1), whereas average spawner density was greatest in western stocks (3.4
fish/ha), followed by southern stocks (2.1 fish/ha), northern stocks (1.0 fish/ha), and
eastern stocks (0.4 fish/ha; Table 2). Some of the weakest year-classes were produced by
large parental stocks, whereas some of the strongest year-classes were produced by small

parental stocks (Figures 9-10).
Region 1 (Minnesota and Wl-1)

Simple-linear regression indicated a significant (P < 0.20) relationship between
the logarithm of cisco recruits per spawner and (1) the density of bloater recruits during
the year of cisco hatching ( BLTR ), (2) the density of rainbow smelt recruits during the
year of cisco hatching (SMLR), (3) average April air temperature during spring when
ciscoes were 11-12 months of age ( AATFY ), (4) the density of age-1 cisco during the
year prior to cisco hatching ( A1CISS ), and (5) the density of sub-adult cisco during the
year prior to cisco hatching (SACISS ). In years used for model construction, the density
of bloater recruits ranged 204-fold, the density of rainbow smelt recruits ranged 352-fold,
average April air temperature during spring when ciscoes were 11-12 months of age
ranged 1.3-fold, the density of age-1 cisco during the year prior to cisco hatching ranged
316-fold, and the density of sub-adult cisco during the year prior to cisco hatching ranged
344-fold (Table 3). The density of bloater recruits and the density of rainbow smelt
recruits were positively correlated to the logarithm of cisco recruits per spawner and were

removed from further analysis.

The final multi-factor model for western stocks included (1) adult spawning stock

size, (2) the density of age-1 cisco during the year prior to cisco hatching, and (3) average
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April air temperature during spring when ciscoes were 11—12 months of age (F =11.16;

df=32; P <0.001; Table 4):

R = (0'004)Sie—(O.121)S,—(0.080)A1C1SS,+(0.171)AATFY, o°

The model indicated that high age-1 cisco density reduced recruitment regardless of
spawner density, whereas high April air temperature improved recruitment regardless of
spawner density. The model predicted strong recruitment at low age-1 cisco density and
high April air temperature, but weak recruitment at high age-1 cisco density and low
April air temperature (Figure 11). The final multi-factor model indicated that cisco stock

density should be maintained near 8.281 spawners/ha (S

max

) to produce peak recruitment

near 0.012 age-1 recruits/ha (R_, ). The model underestimated strong recruitment events

(Figure 12) and residuals were independent and approximately normally distributed
(Figures 13-14). Adjusted R* values were low for both linear and non-linear models
(Table 4).

Region 2 (WI-2, Western Keweenaw, and MI-4)

Simple-linear regression indicated a significant (P < 0.20) relationship between
the logarithm of cisco recruits per spawner and (1) the density of age-1 cisco during the
year of cisco hatching ( A1CISH ), (2) the density of bloater recruits during the year of
cisco hatching ( BLTR ), (3) average April air temperature during spring when ciscoes
were hatching ( AATH ), (4) average April wind speed during spring when ciscoes were
hatching (AAWH ), (5) average April air temperature during spring when ciscoes were
11-12 months of age ( AATFY ), and (6) the density of sub-adult cisco during the year
prior to cisco hatching (SACISS ). In years used for model construction, the density of

age-1 cisco during the year of cisco hatching ranged 2,459-fold, the density of bloater
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recruits ranged 204-fold, average April air temperature during spring when ciscoes were
hatching ranged 1.3-fold, average April wind speed during spring when ciscoes were
hatching ranged 1.4-fold, average April air temperature during spring when ciscoes were
11-12 months of age ranged 1.3-fold, and the density of sub-adult cisco during the year
prior to cisco hatching ranged 344-fold (Table 5). The density of age-1 cisco during the
year of cisco hatching and the density of bloater recruits were positively correlated to the
logarithm of cisco recruits per spawner and were removed from further analysis.

The final multi-factor model for southern stocks included (1) adult spawning
stock size, (2) the interaction between average April wind speed during spring when
ciscoes were hatching and average April air temperature during spring when ciscoes were
11-12 months of age, and (3) the interaction between the density of sub-adult cisco
during the year prior to cisco hatching and average April wind speed during spring when

ciscoes were hatching (F = 14.70; df = 66; P <0.001; Table 6):

—(0.382)5;+(0.009) AAWH ;x AATFY; —(0.002) SACISS ; x AAWH,
R, = (0'134)51.6 (0.382)$;+(0.009) ix i=(0.002) i% ¢

The model indicated that high April wind speed and high April air temperature improved
recruitment regardless of spawner density, whereas high sub-adult cisco density reduced
recruitment regardless of spawner density. The model predicted strong recruitment at
high April wind speed, high April air temperature, and low sub-adult cisco density, but
weak recruitment at low April wind speed, low April air temperature, and high sub-adult
cisco density (Figure 15). The final multi-factor model indicated that cisco stock density

should be maintained near 2.617 spawners/ha (S, ) to produce peak recruitment near

max

0.129 age-1 recruits/ha (R, ). The model underestimated strong recruitment events

(Figure 16) and residuals were independent and approximately normally distributed
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(Figures 17-18). Adjusted R* values were low for both linear and non-linear models

(Table 6).
Region 3 (Michigan South Shore, Whitefish Bay, and Eastern Canada)

Simple-linear regression indicated a significant (P < 0.20) relationship between
the logarithm of cisco recruits per spawner and (1) the density of age-1 cisco during the
year of cisco hatching ( A1CISH ), (2) the density of bloater recruits during the year of
cisco hatching ( BLTR ), (3) average April air temperature during spring when ciscoes
were 11-12 months of age (AATFY ), (4) the biomass of slimy sculpin during the year
prior to cisco hatching ( SSBI ), and (5) the biomass of lake trout during the year of cisco
hatching (LTBH ). In years used for model construction, the density of age-1 cisco
during the year of cisco hatching ranged 435-fold, the density of bloater recruits ranged
82-fold, average April air temperature during spring when ciscoes were 11-12 months of
age ranged 1.4-fold, the biomass of slimy sculpin during the year prior to cisco hatching
ranged 1,885-fold, and the biomass of lake trout during the year of cisco hatching ranged
12,298-fold (Table 7). The density of age-1 cisco during the year of cisco hatching and
the density of bloater recruits were positively correlated to the logarithm of cisco recruits
per spawner and were removed from further analysis.

The final model for eastern stocks included adult spawning stock size (F = 13.71;

df=41; P <0.001; Table 8):
R, = (4.887)S,e O#V% ¢*

The model predicted strong recruitment at low spawner density, but weak recruitment at

high spawner density (Figure 19). The single-factor model indicated that cisco stock
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density should be maintained near 0.292 spawners/ha (S

max

) to produce peak recruitment

near 0.526 age-1 recruits’/ha (R_. ). The model underestimated strong recruitment events

(Figure 20) and residuals were independent and positively skewed (Figures 21-22).

Adjusted R? values were low for both linear and non-linear models (Table 8).
Region 4 (Nipigon Bay, Black Bay, and Thunder Bay)

Simple-linear regression indicated a significant (P < 0.20) relationship between
the logarithm of cisco recruits per spawner and (1) the density of age-1 cisco during the
year prior to cisco hatching ( A1CISS ), (2) the density of bloater recruits during the year
of cisco hatching ( BLTR ), (3) average April wind speed during spring when ciscoes
were hatching ( AAWH ), (4) average April air temperature during spring when ciscoes
were 11-12 months of age (AATFY ), (5) the density of sub-adult cisco during the year
prior to cisco hatching (SACISS ), (6) the density of rainbow smelt recruits during the
year of cisco hatching (SMLR ), and (7) the biomass of rainbow smelt during the year of
cisco hatching (SMLBH ). In years used for model construction, the density of age-1
cisco during the year prior to cisco hatching ranged 336-fold, the density of bloater
recruits ranged 21-fold, average April wind speed during spring when ciscoes were
hatching ranged 2.3-fold, average April air temperature during spring when ciscoes were
11-12 months of age ranged 1.3-fold, the density of sub-adult cisco during the year prior
to cisco hatching ranged 59-fold, the density of rainbow smelt recruits ranged 393-fold,
and the biomass of rainbow smelt during the year of cisco hatching ranged 378-fold
(Table 9). The density of age-1 cisco during the year prior to cisco hatching and the
density of bloater recruits were positively correlated to the logarithm of cisco recruits per

spawner and were removed from further analysis.
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The final multi-factor model for northern stocks included (1) adult spawning
stock size, (2) the interaction between average April wind speed during spring when
ciscoes were hatching and average April air temperature during spring when ciscoes were
11-12 months of age, and (3) the interaction between the biomass of rainbow smelt
during the year of cisco hatching and the density of sub-adult cisco during the year prior

to cisco hatching (F = 16.36; df =47; P <0.001; Table 10):

—(1.260)S;+(0.013) AAWH ;x AATFY;—(0.017) SMLBH ; x SACISS;
Ri — (0181)&8 (1.260)S;+(0.013) ix =(0.017) i i of

The model indicated that high April wind speed and high April air temperature improved
recruitment regardless of spawner density, whereas high rainbow smelt biomass and high
sub-adult cisco density reduced recruitment regardless of spawner density. The model
predicted strong recruitment at high April wind speed, high April air temperature, low
rainbow smelt biomass, and low sub-adult cisco density, but weak recruitment at low
April wind speed, low April air temperature, high rainbow smelt biomass, and high sub-
adult cisco density (Figure 23). The final multi-factor model indicated that cisco stock

density should be maintained near 0.793 spawners/ha (S

max

) to produce peak recruitment
near 0.053 age-1 recruits/ha (R, ). The model underestimated strong recruitment events

(Figure 24) and residuals were independent and approximately normally distributed
(Figures 25-26). Adjusted R” values were low for both linear and non-linear models

(Table 10).
DISCUSSION

My findings are consistent with previous studies of cisco recruitment (Jensen

1996; Hoff 2004), and suggest that recruitment of age-1 cisco in Lake Superior is
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regulated by compensatory density-dependence from adult cisco in all four regions and
juvenile (age-1 and sub-adult) cisco in most (3 of 4) regions. Hoff (2004) found a
significant compensatory density-dependent relationship between recruitment of age-1
cisco and adult spawning stock density, and concluded that recruitment of age-1 cisco
was limited by predation from adult cisco in Wisconsin waters of Lake Superior.
Similarly, Jensen (1996) found a significant negative correlation between recruitment of
age-1 cisco and the biomass of age-1 through age-6+ cisco, and concluded that
recruitment of age-1 cisco was limited by competition from adult and juvenile cisco in
U.S. waters of Lake Superior. Evidence of larval predation by adult or juvenile ciscoes is
rare for Lake Superior (Stockwell et al. 2009), but diet studies for cisco in the lower
Great Lakes and inland lakes suggest that larval predation may be substantial under
certain conditions (Pritchard 1931; Becker 1983). In contrast, evidence from Lake
Superior and studies of inland lakes suggests that large cisco year-classes can limit
zooplankton abundance and cause changes in zooplankton community structure
(Rudstam et al. 1993; Link et al. 1995), thereby leading to increased intraspecific
competition. Diet studies for cisco in Lake Superior and Lake Michigan suggest that egg
predation during spawning may also lead to compensatory density-dependence (Smith
1956; Dryer and Beil 1964; Anderson and Smith 1971). My findings are correlative, so
cause-and-effect cannot be established, but the inclusion of average April air temperature
during spring when ciscoes were 11-12 months of age (described below) in most (3 of 4)
regional models in my study, and previously observed density-dependent changes in
growth and maturation for cisco stocks in Lake Superior (MacCallum and Selgeby 1987;

Bowen et al. 1991; Coffin et al. 2003), are consistent with compensatory density-

95



dependence related to competition, and suggest that competition for limited resources
may regulate recruitment of age-1 cisco in Lake Superior more than egg or larval
predation. Regional variability in the relative importance of adult spawning stock size
and the density of juvenile cisco during the year prior to cisco hatching suggests that
compensatory density-dependence regulates recruitment of age-1 cisco in Lake Superior

on a regional scale, possibly through regional differences in carrying capacity (Chapter
1).

I found that recruitment of age-1 cisco in Lake Superior was positively correlated
to average April air temperature during spring when ciscoes were 11-12 months of age in
most (3 of 4) regions, as was found in a previous study of cisco stock-recruitment in
Wisconsin waters of Lake Superior (Hoff 2004). Hoff (2004) concluded that warmer
April air temperatures shortened the duration of winter and were advantageous to cisco
recruits with limited energy stores. In a study designed to test the effects of body size,
physiological condition, energy stores, and food rations on the survival of age-0 cisco
over a simulated 225-day winter, Pangle et al. (2004) concluded that body size, condition
going into winter, and winter duration were all important factors regulating first-winter
survival. Similarly, body size, condition, and winter duration have been found to regulate
first-winter survival and recruitment of many other fish species (Oliver et al. 1979;
Toneys and Coble 1979; Post and Evans 1989; Johnson and Evans 1990; Thompson et al.
1991; Kirjasniemi and Valtonen 1997; Hurst and Conover 1998; O’Gorman et al. 2004).
My findings suggest that first-winter duration drives recruitment variation of age-1 cisco
in Lake Superior on a lake-wide scale, but multiple biotic and abiotic factors may also

regulate body size and condition going into winter on a smaller scale (Pangle et al. 2004).
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Fisher and Fielder (1998) found that cisco populations in Lake Superior had significantly
lower (P < 0.001) mean relative weight values than inland populations. Perhaps regional
differences in temperature and productivity (Swenson and Heist 1981; Kinnunen 1997;
Oyadomari and Auer 2004) interact with typically low temperatures (Bennett 1978; Hoff
2004) and productivity (Hansen 1990; Horns 2003) in Lake Superior to mediate the
importance of first-winter duration as a final culling mechanism (Hoff 2004) before age-0
ciscoes recruit to age-1. Regional differences in competition from adult and juvenile
cisco may also mediate the importance of first-winter duration by limiting the importance
of spring warming in years of low cisco abundance and promoting the importance of

spring warming in years of high cisco abundance.

I found that recruitment of age-1 cisco in Lake Superior was positively correlated
to average April wind speed during spring when ciscoes were hatching in two of four
regions, as was found in a previous study of cisco stock-recruitment in Wisconsin waters
of Lake Superior (Hoff 2004). Hoff (2004) concluded that strong winds during hatching
dispersed patches of newly hatched larvae, thereby limiting age-0 predation. However,
studies of recruitment for marine fish species suggest that wind speed during hatching
may be related to surface currents important for larval retention on spawning grounds or
transport of newly hatched larvae away from spawning grounds to more productive
nursery areas (Nelson et al. 1977; Bailey 1981; Fechhelm and Fissel 1988; Fechhelm and
Griffiths 1990; Warlen 1994). Alternatively, wind-driven currents my increase larval
food supply (Bakun 1996) or enhance encounter rates between newly hatched larvae and
their prey (Rothschild and Osborn 1988). In Lake Superior, both the highest

concentrations of larval ciscoes and the highest growth rates for larval ciscoes were found
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in near-shore waters with elevated temperatures and zooplankton abundance (Swenson
and Heist 1981; Oyadomari and Auer 2004; Stockwell et al. 2009). Therefore, wind-
driven mechanisms leading to larval retention on spawning grounds or transport of newly
hatched larvae away from spawning grounds to more productive nursery areas may be
more important in determining cisco recruitment in Lake Superior than wind-driven
mechanisms controlling larval food supply, encounter rates between newly hatched
larvae and their prey, or the limiting effects of wind speed on age-0 predation. Regional
differences in the relative importance of average April wind speed during spring when
ciscoes were hatching suggest that wind speed during hatching regulates recruitment of
age-1 cisco in Lake Superior on a regional scale, possibly through regional differences in

exposure to prevailing winds or wind-driven currents.

My findings are consistent with a previous study of cisco stock-recruitment (Hoff
2004) and diet studies for rainbow smelt (Selgeby et al. 1978; Swenson and Heist 1981;
Gorman 2007; Myers 2008), but differ from a previous ecosystem modeling study (Cox
and Kitchell 2004), and suggest that interspecific interactions with rainbow smelt regulate
recruitment of age-1 cisco in the northern region of Lake Superior, but not in western,
southern, or eastern regions. Previously, a study of cisco stock-recruitment in Wisconsin
waters of Lake Superior found no significant correlation between recruitment of age-1
cisco and the density and biomass of rainbow smelt (Hoff 2004). Similarly, diet studies
found no evidence of rainbow smelt predation on larval cisco in the Apostle Islands
region of Lake Superior (0% of 1,711 stomachs contained larval cisco; Selgeby et al.
1978), and only limited evidence of rainbow smelt predation on larval cisco in western

Lake Superior (13-30% estimated consumption of larval cisco; Swenson and Heist
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1981). In contrast, diet studies found substantial rainbow smelt predation on larval cisco
in Black Bay (17% of 1,195 stomachs contained larval cisco; Selgeby et al. 1978), where
rainbow smelt showed a strong diet selectivity for larval cisco (69.3-99.5% of diet by
weight; Gorman 2007), and consumption rates were estimated at up to 100% (Black Bay
and Thunder Bay; Myers 2008). In contrast to my findings, Cox and Kitchell (2004)
concluded that strong rainbow smelt predation regulated cisco populations in Lake
Superior during 1929-1998, but the ecosystem model used was based on data for all of
Lake Superior and failed to account for differences in predation rates among regions. In
my study, regional differences in the relative importance of rainbow smelt biomass
suggest that rainbow smelt predation regulates recruitment of age-1 cisco in Lake
Superior on a regional scale, and differences may be related to the 7-fold greater average
biomass of rainbow smelt in the northern region, compared to western, southern, and
eastern regions. Alternatively, regional differences in the relative importance of rainbow
smelt biomass may be related to abiotic factors leading to increased spatial and temporal
overlap (Stockwell et al. 2009), sub-optimal conditions for larval growth leading to
increased size-dependent predation (Selgeby et al. 1978; Kinnunen 1997), or increased
predation in the relatively small confines of Nipigon Bay, Black Bay, and Thunder Bay,
as was hypothesized as a mechanism leading to increased intraspecific interactions for
alewives (Alosa pseudoharengus) in the Bay of Quinte, Lake Ontario (Ridgway et al.

1990; O’Gorman et al. 2004).

Biotic and abiotic variables included in my study were variables previously
correlated to age-1 cisco recruitment or generally considered to regulate age-1 cisco

recruitment in Lake Superior and variables previously correlated to recruitment of other

99



coregonid species in the Great Lakes, but low adjusted R* values for both linear and non-
linear models for all four regions in my study suggest that one or more important biotic or
abiotic variables may be missing from each regional model. Therefore, future studies of
cisco stock-recruitment in Lake Superior should focus on identifying biotic and abiotic
factors regulating age-1 cisco recruitment that were not tested in my study. The positive
linear relationship between the logarithm of cisco recruits per spawner and the density of
bloater recruits in all four regions of Lake Superior suggests that environmental
conditions promoting cisco recruitment are also important for promoting bloater
recruitment, and field studies should be used to identify biotic and abiotic factors
regulating recruitment of both species. Quantifying primary productivity or zooplankton
abundance may serve as a good initial starting point for many field studies. My findings
suggest that recruitment of age-1 cisco in Lake Superior is driven by large-scale abiotic
factors, but both biotic and abiotic factors regulating recruitment of age-1 cisco in Lake
Superior directly influence the recruitment process at smaller spatial scales. Therefore,
developing multi-factor stock-recruitment models using more precise data collected at
smaller spatial scales will likely improve model fit and could lend more or less support to

biotic and abiotic factors already identified in my study.
MANAGEMENT IMPLICATIONS

The fish-community objective for prey species in Lake Superior calls for
rehabilitation of cisco stocks to historic levels of abundance to provide a forage base for
lake trout and to support a commercial fishery (Busiahn 1990). Fishery management
plans for the lower Great Lakes recognize the cisco as an important member of the native

fish community and call for reestablishment of self-sustaining populations throughout the
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species historic range (Edsall and DeSorcie 2002). Previously, studies of cisco stock-
recruitment in the Great Lakes were limited to one study of the spatial scale for cisco
recruitment dynamics in Lake Superior (Chapter 1) and one study of cisco stock-
recruitment in Wisconsin waters of Lake Superior (Hoff 2004). The previous studies
identified and quantified the spatial scale for cisco recruitment dynamics in Lake
Superior (Chapter 1) and the effects of multiple biotic and abiotic factors correlated to
age-1 cisco recruitment in Wisconsin waters of Lake Superior (Hoff 2004), but failed to
identify or quantify the effects of biotic and abiotic factors on age-1 cisco recruitment in
other regions of Lake Superior, and multi-factor models developed for cisco stocks in
Wisconsin waters of Lake Superior were not broadly applicable to cisco stocks in other
regions of Lake Superior or the lower Great Lakes. Therefore, fishery managers were
forced to carry out cisco restoration and management efforts without reliable estimates of
the effects of biotic and abiotic factors on age-1 cisco recruitment. My findings provide
the first comprehensive estimates of the effects of biotic and abiotic factors on
recruitment of age-1 cisco in Lake Superior, and are broadly applicable to cisco
restoration and management efforts throughout Lake Superior and the entire Great Lakes

basin.

My findings suggest that air temperature during spring when ciscoes are 11-12
months of age drives recruitment of age-1 cisco in Lake Superior on a lake-wide scale,
whereas adult spawning stock size, intraspecific interactions with juvenile cisco, wind
speed during spring when ciscoes are hatching, and interspecific interactions with
rainbow smelt regulate recruitment of age-1 cisco on a regional scale. Most (3 of 4)

regional models in my study contained environmental variables, which are largely
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beyond the control of fishery managers. Therefore, fishery managers are left with
managing adult spawning stock size and the density and biomass of potential predators
and competitors to achieve desired management goals. My findings suggest that cisco
spawning stock size should be maintained near densities of 8.3 spawners/ha in western
stocks, 2.6 spawners/ha in southern stocks, 0.3 spawners/ha in eastern stocks, and 0.8
spawners/ha in northern stocks, whereas the density of juvenile cisco should be
maintained at the lowest levels possible in western, southern, and northern stocks, and the
biomass of rainbow smelt should be maintained at the lowest levels possible in northern
stocks, to produce peak recruitment of age-1 cisco in Lake Superior. Fishery managers
should expect a similar suite of biotic and abiotic factors to regulate recruitment of age-1
cisco throughout the lower Great Lakes, and should evaluate the potential effects of
similar biotic and abiotic factors on recruitment prior to addressing cisco restoration and

management efforts in each lake.

Estimates of the spawning stock size that produced peak recruitment of age-1
cisco in Lake Superior can be used as targets for the restoration of remnant cisco
populations throughout the lower Great Lakes, but because the productivity and fish-
community structure of Lake Superior differs from many of the lower Great Lakes,
fishery managers should exercise caution when applying management parameters
estimated in my study to the lower Great Lakes. Because of Lake Superior’s low
productivity (Hansen 1990; Horns 2003), fishery managers should consider regional
estimates of the spawning stock size that produced peak recruitment of age-1 cisco in
Lake Superior as minimum targets for the restoration of cisco populations throughout the

lower Great Lakes. Therefore, the spawning stock size that produced peak recruitment of
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age-1 cisco in western stocks may be an appropriate minimum target for the restoration of
cisco populations in Lake Ontario, Lake Erie, Lake Huron, and Lake Michigan. Because
the fish-community structure of the lower Great Lakes is dominated by invasive species,
such as the alewife (Fitzsimons and O’Gorman 2006; Stockwell et al. 2009), fishery
managers throughout the lower Great Lakes should also evaluate the potential effects of
increased interspecific predation and competition on cisco populations prior to addressing

cisco restoration and management efforts in each lake.
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Table 1. Summary statistics for estimated recruit densities used in model construction.
Number of density estimates used in model construction (7 ), average (Avg.), minimum
(Min.), and maximum (Max.) recruit density, average coefficient of variation (Avg. CV"),
and average relative standard error (Avg. RSE ) are provided for each region (Region 1 =
western stocks; Region 2 = southern stocks; Region 3 = eastern stocks; Region 4 =

northern stocks).

Recruit Density Bottom-Trawls (fish/ha)
Region n Avg. Min. Max. Avg.CV  Avg. RSE

1 36 5.0 0.1 459 44.53 24.75
2 70 204 0.1 4313 5.68 249
3 43 2.8 0.1 63.1 3.52 1.46
4 51 2.7 0.1 40.0 21.19 10.11
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Table 2. Summary statistics for estimated spawner densities used in model construction.
Number of density estimates used in model construction (7 ), average (Avg.), minimum
(Min.), and maximum (Max.) spawner density, average coefficient of variation

(Avg. CV Trawls) and relative standard error (Avg. RSE Trawls) for bottom-trawl density,
and average coefficient of variation (Avg. CV Gill-Nets) and relative standard error
(Avg. RSE Gill-Nets) for gill-net CPUE are provided for each region (Region 1 = western
stocks; Region 2 = southern stocks; Region 3 = eastern stocks; Region 4 = northern

stocks).

Spawner Density (fish/ha)

Avg.CV  Avg.RSE  Avg.CV  Avg. RSE
Region n Avg. Min. Max. Trawls Trawls Gill-Nets  Gill-Nets

1 36 34 0.1 36.1 7.84 4.13 1.70 0.41
2 70 2.1 0.1 13.7 7.09 2.62 1.99 0.56
3 43 04 0.1 1.2 4.61 1.75 52.06 36.20
4 51 1.0 0.1 4.0 8.51 3.90 1.97 0.89
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Table 3. Summary statistics for significant (P < 0.20) biotic and abiotic variables
identified using simple-linear regression in Region 1 (Minnesota and WI-1). Number of
values used for analysis (7 ), average (Avg.), minimum (Min.), and maximum (Max.)
values are provided for each variable. Shaded cells indicate variables used for final

multi-factor analysis.

Variable Coefficient n Avg. Min. Max. F df P

BLTR + 36 2.0 01 296 6.86 34 <0.02
SMLR + 36 727 1.1 3953 4.16 34 <0.05
AATFY + 36 389 345 46.1 1.79 34 <0.20
AICISS — 36 50 01 459 9.74 34 <0.01
SACISS — 36 29 0.1 499 6.72 34 <0.02
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Table 4. Parameter estimates and standard errors ( SE') for the final multi-factor model

for Region 1 (Minnesota and WI-1). Peak recruitment (R__ ), the spawning stock size

max

that produced peak recruitment (S, ), and adjusted R* values for both linear and non-

max

linear models are provided.

Adjusted  Adjusted R
R? Linear Non-Linear

Parameter Value SE Rinax S max Model Model
o 0.004 1.32 0.012  8.281 0.47 0.10
B -0.121 0.04
OAICISS -0.080 0.03
OAATFY 0.171 0.09
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Table 5. Summary statistics for significant (P < 0.20) biotic and abiotic variables
identified using simple-linear regression in Region 2 (WI-2, Western Keweenaw, and
MI-4). Number of values used for analysis (7 ), average (Avg.), minimum (Min.), and
maximum (Max.) values are provided for each variable. Shaded cells indicate variables

used for final multi-factor analysis.

Variable Coefficient n Avg. Min. Max. F df P
A1CISH + 69 212 0.1 4313 810 67 <0.01

BLTR + 70 42 0.1 1459 6.85 68 <0.02
AATH + 70 392 324 463 4.11 68 <0.05
AAWH + 70 9.1 67 120 331 68 <0.08
AATFY + 70 392 324 463 13.04 68 <0.01
SACISS — 70 7.4 0.1 189.7 5.06 68 <0.03
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Table 6. Parameter estimates and standard errors ( SE') for the final multi-factor model

for Region 2 (WI-2, Western Keweenaw, and MI-4). Peak recruitment (R__ ), the

max

spawning stock size that produced peak recruitment (S, ), and adjusted R* values for

max

both linear and non-linear models are provided.

Adjusted  Adjusted R*
R? Linear Non-Linear

Parameter Value SE Rmax S max Model Model
o 0.134 0.65 0.129 2.617 0.37 0.02
B -0.382 0.08

OSACISS*AAWH -0.002 0.00
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Table 7. Summary statistics for significant (P < 0.20) biotic and abiotic variables
identified using simple-linear regression in Region 3 (Michigan South Shore, Whitefish
Bay, and Eastern Canada). Number of values used for analysis (7 ), average (Avg.),
minimum (Min.), and maximum (Max.) values are provided for each variable. Shaded

cells indicate variables used for final multi-factor analysis.

Variable Coefficient n Avg. Min. Max. F df P

A1CISH + 43 3.1 0.1 63.1 8.61 41 <0.01
BLTR + 43 08 0.1 11.9 30.77 41 <0.01
AATFY + 43 38.8 313 459 395 41 <0.06
SSBI — 43 0.0 0.0 0.2 3.55 41 <0.07
LTBH — 43 0.1 0.0 1.2 1.81 41 <0.19
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Table 8. Parameter estimates and standard errors ( SE ) for the final model for Region 3

(Michigan South Shore, Whitefish Bay, and Eastern Canada). Peak recruitment (R, ),
the spawning stock size that produced peak recruitment (S, ), and adjusted R? values for

both linear and non-linear models are provided.

Adjusted  Adjusted R
R? Linear Non-Linear

Parameter Value SE Runax S max Model Model
o 4.887 244 0526  0.292 0.23 0.02
B -3.420 0.93
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Table 9. Summary statistics for significant (P < 0.20) biotic and abiotic variables
identified using simple-linear regression in Region 4 (Nipigon Bay, Black Bay, and
Thunder Bay). Number of values used for analysis (7 ), average (Avg.), minimum
(Min.), and maximum (Max.) values are provided for each variable. Shaded cells

indicate variables used for final multi-factor analysis.

Variable Coefficient n Avg. Min. Max. F df P

AICISS + 51 41 0.1 488 7.27 49 <0.01
BLTR + 51 0.5 0.1 3.0 12.08 49 <0.01
AAWH + 51 6.8 3.7 86 1.78 49 <0.19
AATFY + 51 37.1 319 4377 5.17 49 <0.03
SACISS — 51 1.6 0.1 8.7 6.46 49 <0.02
SMLR — 51 2796 69 26994 560 49 <0.03
SMLBH = 51 22 0.1 196 2.81 49 <0.11
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Table 10. Parameter estimates and standard errors ( SE ) for the final multi-factor model

for Region 4 (Nipigon Bay, Black Bay, and Thunder Bay). Peak recruitment (R_, ), the

max

spawning stock size that produced peak recruitment (S, ), and adjusted R* values for

max

both linear and non-linear models are provided.

Adjusted  Adjusted R*
R? Linear Non-Linear

Parameter Value SE Rmax S max Model Model
o 0.181 0.58 0.053 0.793 0.48 0.01
B -1.260 0.22

OAAWH*AATFY 0.013 0.00
dsmrsr*saciss  -0.017 0.01

113



Figure 1. Locations of spring bottom-trawl survey stations in Lake Superior. Individual
survey stations are denoted by a unique numeric code. Survey stations in U.S. waters are
numbered <300 and survey stations in Canadian waters are numbered >400 (USGS, Lake

Superior Biological Station, Ashland, WI).
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Figure 2. Locations of lake trout management units in Lake Superior. Jurisdictions in

U.S. waters are denoted by a unique alpha-numeric code (MI = Michigan, W1 =
Wisconsin, and MN = Minnesota) and jurisdictions in Canadian waters are denoted by a

unique numeric code (Hansen 1996).
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Figure 3. Spatial units used for stock-recruitment analysis (Minnesota-MINN
corresponds to a combination of lake trout management units MN-1, MN-2, and MN-3;
WI-1 corresponds to lake trout management unit WI-1; WI-2 corresponds to lake trout
management unit WI-2; Western Keweenaw-WKEW corresponds to a combination of
lake trout management units MI-2 and MI-3; MI-4 corresponds to lake trout management
unit MI-4; Michigan South Shore-MISS corresponds to a combination of lake trout
management units MI-5 and MI-6; Whitefish Bay-WFBY corresponds to a combination
of lake trout management units MI-8, 34, and the southern 63.5% of unit 33; Eastern
Canada-ECAN corresponds to a combination of lake trout management units 23, 24, 26,
28, 29, 31, and the northern 36.5% of unit 33; Nipigon Bay-NIPB corresponds to a
combination of lake trout management units 10, 11, 12, 18, and 19; Black Bay-BLKB
corresponds to a combination of lake trout management unit 7, the eastern 41.2% of unit
6, and the western 28.8% of unit 9; Thunder Bay-THBY corresponds to a combination of

lake trout management units 1, 2, 3, 4, 5, and the western 58.8% of unit 6).
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Figure 4. Locations of National Climatic Data Center (NCDC) monitoring stations used
for temperature data (temperatures from Grand Marais were assigned to Minnesota-
MINN; temperatures from Duluth were assigned to WI-1; temperatures from Bayfield
were assigned to WI-2; temperatures from Hancock-Houghton were assigned to Western
Keweenaw-WKEW and MI-4; temperatures from Marquette were assigned to Michigan
South Shore-MISS; temperatures from Sault Ste. Marie were assigned to Whitefish Bay-
WFBY; temperatures from Wawa were assigned to Eastern Canada-ECAN; temperatures
from Terrace Bay were assigned to Nipigon Bay-NIPB; temperatures from Thunder Bay

were assigned to Black Bay-BLKB and Thunder Bay-THBY).
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Figure 5. Locations of National Climatic Data Center (NCDC) monitoring stations used

Wawa

for wind speed data (wind speeds from Duluth were assigned to Minnesota-MINN, WI-1,
and WI-2; wind speeds from Hancock-Houghton were assigned to Western Keweenaw-
WKEW, MI-4, and Michigan South Shore-MISS; wind speeds from Sault Ste. Marie
were assigned to Whitefish Bay-WFBY; wind speeds from Wawa were assigned to
Eastern Canada-ECAN; wind speeds from Terrace Bay were assigned to Nipigon Bay-
NIPB; wind speeds from Thunder Bay were assigned to Black Bay-BLKB and Thunder

Bay-THBY).
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Figure 6. Example Great Lakes Environmental Research Laboratory (GLERL) ice cover

digital raster graphic (DRGQG) file clipped to the Lake Superior shoreline. Lighter colors

indicate areas of extended ice cover (GLERL, Ann Arbor, MI).
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Figure 7. Buffered bottom-trawl stations clipped to the Lake Superior shoreline (a), and
an overlay of a bottom-trawl digital raster graphic (DRQ) file on an ice cover DRG file
clipped to the Lake Superior shoreline (b). In (a), each circle has a radius of 16.5 km
(average movement distance of cisco in a Lake Michigan tagging study; Smith and Van
Oosten 1940). In (b), lighter colored circles indicate the extent of the bottom-trawl DRG
file. Data from ice cover DRG file grids corresponding to overlaying bottom-trawl DRG
file grids were extracted for analysis. Ice cover values were extracted for each bottom-

trawl station to allow as much flexibility as possible for data analysis.
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Figure 8. Regional stock groupings identified in Chapter 1 (black = western stocks;
white = southern stocks; dark gray = eastern stocks; light gray = northern stocks).

Separate multi-factor models were fitted to data from each regional group of spatial units.
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Figure 9. Relationship between estimated recruit density in bottom-trawls and spawner
density indexed using combined bottom-trawl and gill-net data in (a) Region 1

(Minnesota and WI-1) and (b) Region 2 (WI-2, Western Keweenaw, and MI-4).
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Figure 10. Relationship between estimated recruit density in bottom-trawls and spawner
density indexed using combined bottom-trawl and gill-net data in (a) Region 3 (Michigan
South Shore, Whitefish Bay, and Eastern Canada) and (b) Region 4 (Nipigon Bay, Black

Bay, and Thunder Bay).
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Figure 11. Relationship between recruit density, spawner density, and the density of age-

1 cisco during the year prior to cisco hatching ( A1CISS ) in Region 1 (Minnesota and WI-

1). Average April air temperature during spring when ciscoes were 11-12 months of age
was held at (a) 46.1°F, (b) 38.9°F, and (c) 34.5°F to illustrate the effect of age-1 cisco

density on recruitment at the maximum, average, and minimum observed April air
temperatures.
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Figure 12. Plot of observed (x) and predicted (solid) recruit densities from Region 1
(Minnesota and WI-1). Standard errors are provided for observed values. Years
provided correspond to year of hatching. The final model appears to underestimate

strong recruitment events.
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Figure 13. Time-series plot of residuals from Region 1 (Minnesota and WI-1). Years

provided correspond to year of hatching. Residuals appear independent.

126



-
O 3
3
O
S 2r -
D ©
- 5
© 1 9 _
O
£ 5
S ¢
- 0_ épg o
8 e
S Ci
s Ir 8 7
= 0
8 O
5 2 5
O
Q.
4 -3 | | | | | |

3 -2 -1 0 1 2 3 4
RESID1

Figure 14. Normal probability plot of residuals from Region 1 (Minnesota and WI-1).

Residuals appear approximately normally distributed.
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Figure 15. Relationship between recruit density, spawner density, and (a)—(d) average

April wind speed during spring when ciscoes were hatching ( AAWH ) in Region 2 (WI-

2, Western Keweenaw, and MI-4). Average April air temperature during spring when

ciscoes were 11-12 months of age and the density of sub-adult cisco during the year prior

to cisco hatching were held at (a) 46.3°F and 0.145 fish/ha, (b) 39.2°F and 0.145 fish/ha,

(c) 32.4°F and 0.145 fish/ha, and (d) 32.4 °F and 7.447 fish/ha to illustrate the combined

effects of April wind speed, April air temperature, and sub-adult cisco density on

recruitment.
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Figure 15. (continued) Relationship between recruit density, spawner density, and (e)
average April wind speed during spring when ciscoes were hatching ( A4WH ) or (f) the
density of sub-adult cisco during the year prior to cisco hatching ( SACISS ) in Region 2
(WI-2, Western Keweenaw, and MI-4). Average April air temperature during spring
when ciscoes were 11-12 months of age and the density of sub-adult cisco during the

year prior to cisco hatching were held at () 32.4°F and 189.673 fish/ha, whereas average

April wind speed during spring when ciscoes were hatching and average April air

temperature during spring when ciscoes were 11-12 months of age were held at (f) 11.95

mph and 46.3°F, to illustrate the combined effects of April wind speed, April air

temperature, and sub-adult cisco density on recruitment.
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Figure 16. Plot of observed (x) and predicted (solid) recruit densities from Region 2 (WI-
2, Western Keweenaw, and MI-4). Standard errors are provided for observed values.
Years provided correspond to year of hatching. The final model appears to underestimate

strong recruitment events.
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Figure 17. Time-series plot of residuals from Region 2 (WI-2, Western Keweenaw, and

MI-4). Years provided correspond to year of hatching. Residuals appear independent.
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Figure 18. Normal probability plot of residuals from Region 2 (WI-2, Western

Keweenaw, and MI-4). Residuals appear approximately normally distributed.
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Figure 19. Single-factor stock-recruitment relationship for cisco stocks in Region 3
(Michigan South Shore, Whitefish Bay, and Eastern Canada). Low stock densities are

predicted to produce stronger recruitment than high stock densities.
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Figure 20. Plot of observed (x) and predicted (solid) recruit densities from Region 3
(Michigan South Shore, Whitefish Bay, and Eastern Canada). Standard errors are
provided for observed values. Years provided correspond to year of hatching. The final

model appears to underestimate strong recruitment events.
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Figure 21. Time-series plot of residuals from Region 3 (Michigan South Shore,
Whitefish Bay, and Eastern Canada). Years provided correspond to year of hatching.

Residuals appear independent.
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Figure 22. Normal probability plot of residuals from Region 3 (Michigan South Shore,

Whitefish Bay, and Eastern Canada). Residuals appear positively skewed.
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Figure 23. Relationship between recruit density, spawner density, and (a)—(d) average
April wind speed during spring when ciscoes were hatching ( A4AWH ) in Region 4
(Nipigon Bay, Black Bay, and Thunder Bay). Average April air temperature during
spring when ciscoes were 11-12 months of age and the interaction between the biomass

of rainbow smelt during the year of cisco hatching and the density of sub-adult cisco
during the year prior to cisco hatching were held at (a) 43.7°F and 0.012, (b) 37.1°F and
0.012, (¢) 31.9°F and 0.012, and (d) 31.9 °F and 5.477 to illustrate the combined effects

of April wind speed, April air temperature, rainbow smelt biomass, and sub-adult cisco
density on recruitment.
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Figure 23. (continued) Relationship between recruit density, spawner density, and (e)
average April wind speed during spring when ciscoes were hatching ( A4WH ) or (f) the
interaction between the biomass of rainbow smelt during the year of cisco hatching
(SMLBH ) and the density of sub-adult cisco during the year prior to cisco hatching
(SACISS ) in Region 4 (Nipigon Bay, Black Bay, and Thunder Bay). Average April air
temperature during spring when ciscoes were 11-12 months of age and the interaction
between the biomass of rainbow smelt during the year of cisco hatching and the density
of sub-adult cisco during the year prior to cisco hatching were held at (e) 31.9°F and
150.247, whereas average April wind speed during spring when ciscoes were hatching
and average April air temperature during spring when ciscoes were 11—12 months of age
were held at (f) 8.6 mph and 43.7°F, to illustrate the combined effects of April wind

speed, April air temperature, rainbow smelt biomass, and sub-adult cisco density on
recruitment.
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Figure 24. Plot of observed (x) and predicted (solid) recruit densities from Region 4
(Nipigon Bay, Black Bay, and Thunder Bay). Standard errors are provided for observed
values. Years provided correspond to year of hatching. The final model appears to

underestimate strong recruitment events.
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Figure 25. Time-series plot of residuals from Region 4 (Nipigon Bay, Black Bay, and
Thunder Bay). Years provided correspond to year of hatching. Residuals appear

independent.
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Figure 26. Normal probability plot of residuals from Region 4 (Nipigon Bay, Black Bay,

and Thunder Bay). Residuals appear approximately normally distributed.
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CONCLUSIONS

The fish-community objective for prey species in Lake Superior calls for
rehabilitation of cisco stocks to historic levels of abundance to provide a forage base for
lake trout and to support a commercial fishery (Busiahn 1990). Fishery management
plans for the lower Great Lakes recognize the cisco as an important member of the native
fish community and call for reestablishment of self-sustaining populations throughout the
species historic range (Edsall and DeSorcie 2002). Previously, studies of cisco stock-
recruitment in the Great Lakes were limited to one study of cisco stock-recruitment in
Wisconsin waters of Lake Superior (Hoff 2004). The previous study identified and
quantified the effects of multiple biotic and abiotic factors correlated to age-1 cisco
recruitment, but failed to identify or quantify the spatial scale for cisco recruitment
dynamics, and management parameters estimated for cisco stocks in Wisconsin waters of
Lake Superior were not broadly applicable to cisco stocks in other regions of Lake
Superior or the lower Great Lakes. My findings provide the first estimate of the spatial
scale for cisco recruitment dynamics and the first comprehensive estimates of the effects
of biotic and abiotic factors on recruitment of age-1 cisco in Lake Superior, and are
broadly applicable to cisco restoration and management efforts throughout Lake Superior

and the entire Great Lakes basin.

In Chapter 1, I found that recruitment variation of cisco in Lake Superior was best
described by an 8-parameter regional model with separate stock-recruitment relationships
for western, southern, eastern, and northern stocks. The regional scale identified for
modeling suggests that large-scale abiotic factors are more important than small-scale

biotic factors in regulating cisco recruitment in Lake Superior, and that fishery managers
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throughout Lake Superior and the entire Great Lakes basin should address cisco
restoration and management efforts on a regional scale in each lake. I also found that the
density-independent recruitment rate and the rate of compensatory density-dependence
varied among regions at different rates. Relatively constant density-independent
recruitment rates among regions in my study suggest that the ability to reproduce at low
spawning stock size may be genetically pre-determined and similar for cisco stocks
throughout Lake Superior, whereas highly variable rates of compensatory density-
dependence among regions in my study suggest that large-scale abiotic factors drive
regional differences in age-1 cisco year-class strength and regional deviations from
normal patterns of recruitment synchrony in Lake Superior through regional differences
in compensatory density-dependence. Finally, I found that peak recruitment and the
spawning stock size that produced peak recruitment varied among regions. Estimates of
peak recruitment and the spawning stock size that produced peak recruitment in my study
were greatest for the most productive and lowest for the least productive regions of Lake
Superior, which suggests that carrying capacity may be an important underlying factor
driving regional differences in rates of compensatory density-dependence for cisco stocks

in Lake Superior.

In Chapter 2, I found that recruitment variation of cisco in Lake Superior was
correlated to adult spawning stock size in all four regions, the density of juvenile cisco
during the year prior to cisco hatching in three of four regions, average April air
temperature during spring when ciscoes were 11-12 months of age in three of four
regions, average April wind speed during spring when ciscoes were hatching in two of

four regions, and the biomass of rainbow smelt during the year of cisco hatching in one
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of four regions. My findings support the hypothesis that different biotic and abiotic
factors regulate cisco recruitment within different regions of Lake Superior, suggest that
air temperature during spring when ciscoes are 11-12 months of age drives recruitment
variation on a lake-wide scale, whereas adult spawning stock size, intraspecific
interactions with juvenile cisco, wind speed during spring when ciscoes are hatching, and
interspecific interactions with rainbow smelt regulate recruitment variation on a regional
scale in Lake Superior. Laboratory and field studies suggest that air temperature during
spring when ciscoes are 11-12 months of age may positively influence recruitment by
shortening the duration of winter, whereas adult spawning stock size and the density of
juvenile cisco may negatively influence recruitment by increasing competition for limited
resources, wind speed during spring when ciscoes are hatching may positively influence
recruitment by promoting larval retention on spawning grounds or transport of newly
hatched larvae away from spawning grounds to more productive nursery areas, and the
biomass of rainbow smelt may negatively influence recruitment through larval predation.
The variety of biotic and abiotic variables included in final multi-factor models in my
study suggests that fishery managers throughout Lake Superior and the entire Great
Lakes basin should evaluate the potential effects of similar biotic and abiotic factors on

recruitment prior to addressing cisco restoration and management efforts in each lake.
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Table 1. Results of the linear regression for cisco recruitment in Region 1 (Minnesota
and WI-1).

>MODEL LNRAST = CONSTANT+AST

>ESTIMATE / TOL=1e-012

Data for the following results were selected according to:
(MINN = 1) OR (WI1 = 1)

28 case(s) deleted due to missing data.

Eigenvalues of unit scaled X'X
1 2
1.446656175 0.553343825

Condition indices
1 2
1.000000000 1.616907326

Variance proportions

1 2
CONSTANT 0.276671912 0.723328088
AST 0.276671912 0.723328088

Dep Var: LNRAST N: 36 Multiple R: 0.581122069 Squared multiple R: 0.337702859

Adjusted squared multiple R: 0.318223531 Standard error of estimate: 1.617942369

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 0.866821287 0.301391917 0.000000000 . 2.87606 0.00690
AST -0.163291478 0.039217791 -0.581122069 1.00E+00 -4.16371 0.00020
Effect Coefficient Lower 95% Upper 95%

CONSTANT 0.866821287 0.254319209 1.479323364

AST -0.163291478 -0.242991620 -0.083591335

Correlation matrix of regression coefficients

CONSTANT AST

CONSTANT 1.000000000

AST -0.446656175 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 4.53823E+01 1 4.53823E+01 1.73365E+01 0.000202045
Residual 8.90031E+01 34 2.617737511
Kk WARNING ***
Case 50 has large leverage (Leverage = 0.656670169)
Durbin-Watson D Statistic 2.875124717

First Order Autocorrelation -0.456289855
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Table 2. Results of the linear regression for cisco recruitment in Region 2 (WI-2,
Western Keweenaw, and MI-4).

>MODEL LNRAST = CONSTANT+AST

>ESTIMATE / TOL=1e-012

Data for the following results were selected according to:
(WI2 = 1) OR (WKEW = 1) OR (MI4 = 1)

26 case(s) deleted due to missing data.

Eigenvalues of unit scaled X'X
1 2
1.587320842 0.412679158

Condition indices
1 2
1.000000000 1.961218997

Variance proportions

1 2
CONSTANT 0.206339579 0.793660421
AST 0.206339579 0.793660421

Dep Var: LNRAST N: 70 Multiple R: 0.549204544 Squared multiple R: 0.301625631

Adjusted squared multiple R: 0.291355420 Standard error of estimate: 2.028049553

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 1.333620480 0.299495923 0.000000000 . 4.45288 0.00003
AST -0.450260713 0.083084426 -0.549204544 1.00E+00 -5.41932 0.00000
Effect Coefficient Lower 95% Upper 95%
CONSTANT 1.333620480 0.735985655 1.931255306
AST -0.450260713 -0.616053108 -0.284468318

Correlation matrix of regression coefficients

CONSTANT AST

CONSTANT 1.000000000

AST -0.587320842 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 1.20794E+02 1 1.20794E+02 2.93690E+01 0.000000851
Residual 2.79683E+02 68 4.112984987
Kk WARNING ***
Case 147 has large leverage (Leverage = 0.206183913)
Case 148 has large leverage (Leverage = 0.237716584)
Durbin-Watson D Statistic 1.465496346

First Order Autocorrelation 0.255923400
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Table 3. Results of the linear regression for cisco recruitment in Region 3 (Michigan
South Shore, Whitefish Bay, and Eastern Canada).

>MODEL LNRAST = CONSTANT+AST

>ESTIMATE / TOL=1e-012

Data for the following results were selected according to:
(MISS = 1) OR (WFBY = 1) OR (ECAN = 1)

19 case(s) deleted due to missing data.

Eigenvalues of unit scaled X'X
1 2
1.869849995 0.130150005

Condition indices
1 2
1.000000000 3.790367230

Variance proportions

1 2
CONSTANT 0.065075003 0.934924997
AST 0.065075003 0.934924997

Dep Var: LNRAST N: 43 Multiple R: 0.500652678 Squared multiple R: 0.250653104

Adjusted squared multiple R: 0.232376351 Standard error of estimate: 1.410766735

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 1.586552732 0.436109457 0.000000000 . 3.63797 0.00076
AST -3.420445732 0.923625019 -0.500652678 1.00E+00 -3.70328 0.00063
Effect Coefficient Lower 95% Upper 95%
CONSTANT 1.586552732 0.705811803 2.467293662
AST -3.420445732 -5.285744331 -1.555147133

Correlation matrix of regression coefficients

CONSTANT AST

CONSTANT 1.000000000

AST -0.869849995 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 2.72951E+01 1 2.72951E+01 1.37143E+01 0.000628112
Residual 8.16008E+01 41 1.990262781
Kk WARNING ***
Case 150 is an outlier (Studentized Residual = 4.034585164)
Case 169 has large leverage (Leverage = 0.269333102)
Durbin-Watson D Statistic 1.265258262

First Order Autocorrelation 0.357162590
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Table 4. Results of the linear regression for cisco recruitment in Region 4 (Nipigon Bay,
Black Bay, and Thunder Bay).

>MODEL LNRAST = CONSTANT+AST

>ESTIMATE / TOL=1e-012
Data for the following results were selected according to:
(NIPB = 1) OR (BLKB = 1) OR (THBY = 1)

Eigenvalues of unit scaled X'X
1 2
1.761234438 0.238765562

Condition indices
1 2
1.000000000 2.715956069

Variance proportions

1 2
CONSTANT 0.119382781 0.880617219
AST 0.119382781 0.880617219

Dep Var: LNRAST N: 51 Multiple R: 0.628373554 Squared multiple R: 0.394853323

Adjusted squared multiple R: 0.382503391 Standard error of estimate: 1.426687582

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 1.577124971 0.308069969 0.000000000 . 5.11937 0.00001
AST -1.338784362 0.236769097 -0.628373554 1.00E+00 -5.65439 0.00000
Effect Coefficient Lower 95% Upper 95%
CONSTANT 1.577124971 0.958035178 2.196214764
AST -1.338784362 -1.814589686 -0.862979037

Correlation matrix of regression coefficients

CONSTANT AST

CONSTANT 1.000000000

AST -0.761234438 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 6.50772E+01 1 6.50772E+01 3.19721E+01 0.000000794
Residual 9.97364E+01 49 2.035437457
*x* WARNING ***
Case 235 has large leverage (Leverage = 0.236396846)
Case 236 is an outlier (Studentized Residual = 3.326279771)
Case 252 has large leverage (Leverage = 0.276421091)
Durbin-Watson D Statistic 1.871450013

First Order Autocorrelation 0.054121510
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Table 1. Python code used for ASCII grid conversions.

nmn

Purpose: Converts NOAA ASCII Grids to ArcInfo grids

Features:

nmnn

__author__ ="Alan Bond"
__version__ ="1.0"
__date_ ="10-24-2007"

import os, sys, glob
import arcgisscripting

gp = arcgisscripting.create()
convertedGridFolderName = 'ReformatedGrids'
arcInfoGridFolderName = 'ArcInfoGrids'
noaaGridExtension = '.dat'

logFileName = 'GridConversionLog.log'

# Items needed for header
numberOfColumns ='516'
numberOfRows ='510"
lowerLeftXCoord = '-649446.25'
lowerLeftYCoord = '3306260'
cellSize = "2550'

noDataValue = '-99'

151



def MakeGrid(InAsciiFilePath, OutRasterPath):

try:
gp.ASCIIToRaster conversion(InAsciiFilePath, OutRasterPath, "INTEGER")
status = 1

except:
status = 0

return status

def WriteHeader():
I=1]
l.append('ncols %s' %(numberOfColumns))
l.append('nrows %s' %(numberOfRows))
l.append('xllcorner %s' %(lowerLeftXCoord))
l.append('yllcorner %s' %(lowerLeftY Coord))
l.append('cellsize %s' %(cellSize))
l.append('nodata_value %s\n' %(noDataValue))
return "\n'.join(1)

def ReFormatLine(LineOfAscii):
=]
for 1 in range(3,len(LineOfAscii)+3, 3):
l.append(LineOfAscii[i-3:1].strip())
#print |
reFormatedLine ="'",join(])
reFormatedLine = '%s%s' %(reFormatedLine, "\n')
return reFormatedLine

if name =='" main_ "

# check to make sure we have an input folder specified on the cmd line
if len(sys.argv) !=2:
print 'You must specify a folder that contains the grids to be converted.'
sys.exit
elif os.path.isdir(sys.argv[1]):
inputFolder = sys.argv[1]
else:
print '%s is not a valid directory.' %(sys.argv[1])
sys.exit

# open log file

logFilePath = '%s%s%s' %(inputFolder, os.sep, logFileName)
logFile = file(logFilePath, 'w")
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# get list of noaa grids

logFile.write('Getting list of files to convert.\n")

noaaGrids = glob.glob1(inputFolder, *%s' %(noaaGridExtension))
logFile.write('"Found %s files to convert.\n\n' %(len(noaaGrids)))

# create output folders for reformatted ascii grids and arcinfo grids
logFile.write('Making sure output folders exist.\n")
convertedGridFolderPath = '%s%s%s' %(inputFolder, os.sep,
convertedGridFolderName)
if not os.path.exists(convertedGridFolderPath):
os.mkdir(convertedGridFolderPath)
arcInfoFolderPath = '%s%s%s' %(inputFolder, os.sep, arcInfoGridFolderName)
if not os.path.exists(arcInfoFolderPath):
os.mkdir(arcInfoFolderPath)
logFile.write('Output folders exist.\n\n")

# reformat old grid and write to new file
for f in noaaGrids:
# create a new file to put the converted data into
try:
logFile.write('Begining to convert file named %s . . . ' %(f))
print "
print 'Begining to convert file named %s . . . ' %(f)
convertedFileName = '%s%s%s' %(os.path.splitext(f)[0], 'C', .ASC")
convertedPath = os.path.join(convertedGridFolderPath, convertedFileName)
convertedFile = file(convertedPath, 'w")

# write the header
convertedFile.write(WriteHeader())

# read each line in the file, convert it, and then write it out to the converted file.
oldFilePath = os.path.join(inputFolder, f)
oldFile = file(oldFilePath, 'r')
for line in oldFile.readlines():
convertedFile.write(ReFormatLine(line[:-1]))

convertedFile.close()

oldFile.close()

logFile.write('Conversion of %s finished.\n' %(f))
print 'Conversion of %s finished.' %(f)

logFile.write('Starting creation of the ArcInfo grid %s .. ."'
%(os.path.splitext(f)[0]))
print 'Starting creation of the ArcInfo grid %s . . . ' %(os.path.splitext(f)[0])

gridPath = os.path.join(arcInfoFolderPath, os.path.splitext(f)[0])
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# create arcinfo grids
if MakeGrid(convertedPath, gridPath):
logFile.write('creation of ArcInfo grid %s completed.\n\n'

%(os.path.splitext()[0]))
print 'creation of ArcInfo grid %s completed.\n' %(os.path.splitext(f)[0])

else:
logFile.write((CREATION OF ARCINFO GRID %s FAILED!!\n\n'

%(os.path.splitext(f)[0]))
print 'CREATION OF ARCINFO GRID %s FAILED!!\n\n'
%(os.path.splitext(f)[0])
except:
logFile.write('THERE WERE PROBLEMS WITH THE CONVERSTION
FOR FILE %s' %(oldFilePath))

logFile.close()
print 'Finished processing files %s.' %(inputFolder)
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Table 2. Results of the multiple-regression for cisco recruitment in Region 1 (Minnesota
and WI-1).

MODEL LNRAST = CONSTANT+AST+AlCISS+AATFEY

>ESTIMATE / TOL=0.1

Data for the following results were selected according to:
(MINN = 1) OR (WI1 = 1)

13 case(s) deleted due to missing data.

Eigenvalues of unit scaled X'X
1 2 3 4
2.618143445 0.759896333 0.619674779 0.002285443

Condition indices
1 2 3 4
1.000000000 1.856177672 2.055487350 3.38463E+01

Variance proportions

1 2 3 4
CONSTANT 0.000580852 0.001008322 0.000000980 0.998409846
AST 0.044835754 0.297859543 0.574571397 0.082733305
A1CISS 0.044050397 0.312575089 0.548948458 0.094426056
AATFEFY 0.000580598 0.000998771 0.000003739 0.998416892

Dep Var: LNRAST N: 36 Multiple R: 0.715095423 Squared multiple R: 0.511361464

Adjusted squared multiple R: 0.465551601 Standard error of estimate: 1.432501002

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT -5.528983706 3.531950100 0.000000000 . -1.56542 0.12732
AST -0.120758116 0.037132737 -0.429754247 0.8744120 -3.25207 0.00270
A1CISS -0.079812153 0.024554986 -0.435766779 0.8495485 -3.25034 0.00271
AATFY 0.171087269 0.090694686 0.250807328 0.8638314 1.88641 0.06834
Effect Coefficient Lower 95% Upper 95%
CONSTANT -5.528983706 -1.27233E+01 1.665363307
AST -0.120758116 -0.196395027 -0.045121205
Al1CISS -0.079812153 -0.129829023 -0.029795283
AATFY 0.171087269 -0.013651764 0.355826302
Correlation matrix of regression coefficients
CONSTANT AST A1CISS AATFY

CONSTANT 1.000000000

AST -0.298881724 1.000000000

Al1CISS 0.293615360-0.300430398 1.000000000

AATFY -0.996831024 0.273794684-0.318224013 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 6.87195E+01 3 2.29065E+01 1.11627E+01 0.000035842
Residual 6.56659E+01 32 2.052059120
*Hxx WARNING ***
Case 5 is an outlier (Studentized Residual = 3.070530757)
Case 29 has large leverage (Leverage = 0.522125803)
Case 35 has large leverage (Leverage = 0.378514845)
Case 37 has large leverage (Leverage = 0.727308691)
Durbin-Watson D Statistic 2.160944523

First Order Autocorrelation -0.094654001
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Table 3. Results of the multiple-regression for cisco recruitment in Region 2 (WI-2,
Western Keweenaw, and MI-4).

MODEL LNRAST = CONSTANT+AST+AAWHAATFY+AAWHSACISS

>ESTIMATE / TOL=0.1

Data for the following results were selected according to:
(WI2 = 1) OR (WKEW = 1) OR (MI4 = 1)

3 case(s) deleted due to missing data.

Eigenvalues of unit scaled X'X
1 2 3 4
2.565323958 0.865011888 0.557331582 0.012332572

Condition indices
1 2 3 4
1.000000000 1.722106756 2.145429667 1.44226E+01

Variance proportions

1 2 3 4
CONSTANT 0.003269272 0.000794092 0.003855580 0.992081055
AST 0.051176592 0.009682661 0.822627768 0.116512979
AAWHAATFEY 0.003436260 0.001099123 0.006587314 0.988877303
AAWHSACISS 0.027828879 0.953479533 0.000795830 0.017895759

Dep Var: LNRAST N: 70 Multiple R: 0.632875963 Squared multiple R: 0.400531984

Adjusted squared multiple R: 0.373283438 Standard error of estimate: 1.907216139

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT -2.010827954 1.488370492 0.000000000 . -1.35103 0.18130
AST -0.382188272 0.081669216 -0.466173330 0.9153036 -4.67971 0.00001
AAWHAATFY 0.009357532 0.003929584 0.238562319 0.9049984 2.38130 0.02014
AAWHSACISS -0.002272962 0.001135649 -0.192492406 0.9819538 -2.00147 0.04946
Effect Coefficient Lower 95% Upper 95%
CONSTANT -2.010827954 -4.982455599 0.960799691
AST -0.382188272 -0.545246128 -0.219130417
AAWHAATFY 0.009357532 0.001511864 0.017203200
AAWHSACISS -0.002272962 -0.004540358 -0.000005566
Correlation matrix of regression coefficients
CONSTANT AST AAWHAATFY AAWHSACISS

CONSTANT 1.000000000

AST -0.380595941 1.000000000

AAWHAATFY -0.981152282 0.282346474 1.000000000

AAWHSACISS -0.149470636-0.038269817 0.112724830 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 1.60404E+02 3 5.34680E+01 1.46992E+01 0.000000197
Residual 2.40073E+02 66 3.637473402
Kk WARNING ***
Case 58 has large leverage (Leverage = 0.800418423)
Case 112 has large leverage (Leverage = 0.240557616)
Durbin-Watson D Statistic 1.473163926

First Order Autocorrelation 0.250640309
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Table 4. Results of the regression for cisco recruitment in Region 3 (Michigan South
Shore, Whitefish Bay, and Eastern Canada).

MODEL LNRAST = CONSTANT+AST

>ESTIMATE / TOL=0.1

Data for the following results were selected according to:
(MISS = 1) OR (WEFBY = 1) OR (ECAN = 1)

10 case(s) deleted due to missing data.

Eigenvalues of unit scaled X'X
1 2
1.869849995 0.130150005

Condition indices
1 2
1.000000000 3.790367230

Variance proportions

1 2
CONSTANT 0.065075003 0.934924997
AST 0.065075003 0.934924997

Dep Var: LNRAST N: 43 Multiple R: 0.500652678 Squared multiple R: 0.250653104

Adjusted squared multiple R: 0.232376351 Standard error of estimate: 1.410766735

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 1.586552732 0.436109457 0.000000000 . 3.63797 0.00076
AST -3.420445732 0.923625019 -0.500652678 1.00E+00 -3.70328 0.00063
Effect Coefficient Lower 95% Upper 95%
CONSTANT 1.586552732 0.705811803 2.467293662
AST -3.420445732 -5.285744331 -1.555147133

Correlation matrix of regression coefficients

CONSTANT AST

CONSTANT 1.000000000

AST -0.869849995 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 2.72951E+01 1 2.72951E+01 1.37143E+01 0.000628112
Residual 8.16008E+01 41 1.990262781
FHxk WARNING ***
Case 126 i1is an outlier (Studentized Residual = 4.034585164)
Case 145 has large leverage (Leverage = 0.269333102)
Durbin-Watson D Statistic 1.265258262

First Order Autocorrelation 0.357162590
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Table 5. Results of the multiple-regression for cisco recruitment in Region 4 (Nipigon
Bay, Black Bay, and Thunder Bay).

MODEL LNRAST = CONSTANT+AST+AAWHAATFY+SMLBHSACISS

>ESTIMATE / TOL=0.1

Data for the following results were selected according to:
(NIPB = 1) OR (BLKB = 1) OR (THBY = 1)

Eigenvalues of unit scaled X'X
1 2 3 4
2.765432123 0.901853079 0.321783560 0.010931238

Condition indices
1 2 3 4
1.000000000 1.751110715 2.931565323 1.59055E+01

Variance proportions

1 2 3 4
CONSTANT 0.002565114 0.000414163 0.008230170 0.988790553
AST 0.041150417 0.007382054 0.915807824 0.035659706
AAWHAATFY 0.002700113 0.000466044 0.011395218 0.985438625
SMLBHSACISS 0.017794095 0.981270967 0.000036607 0.000898331

Dep Var: LNRAST N: 51 Multiple R: 0.714761059 Squared multiple R: 0.510883371

Adjusted squared multiple R: 0.479663160 Standard error of estimate: 1.309645877

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT -1.707624643 1.267781313 0.000000000 . -1.34694 0.18446
AST -1.260354360 0.218644781 -0.591561547 0.9881476 -5.76439 0.00000
AAWHAATFY 0.013093085 0.004817491 0.278639108 0.9900855 2.71782 0.00917
SMLBHSACISS -0.016574076 0.008724125 -0.194051902 0.9974559 -1.89980 0.06361
Effect Coefficient Lower 95% Upper 95%
CONSTANT -1.707624643 -4.258071720 0.842822434
AST -1.260354360 -1.700210933 -0.820497788
AAWHAATFY 0.013093085 0.003401544 0.022784626
SMLBHSACISS -0.016574076 -0.034124752 0.000976599
Correlation matrix of regression coefficients
CONSTANT AST AAWHAATFEFY SMLBHSACISS

CONSTANT 1.000000000

AST -0.262571218 1.000000000

AAWHAATFY -0.974357836 0.097697687 1.000000000

SMLBHSACISS -0.043756093-0.046600671 0.014653873 1.000000000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 8.42006E+01 3 2.80669E+01 1.63639E+01 0.000000203
Residual 8.06131E+01 47 1.715172322
FHxx WARNING ***
Case 197 has large leverage (Leverage = 0.955364946)
Case 210 is an outlier (Studentized Residual = 3.551154198)
Case 226 has large leverage (Leverage = 0.294357185)
Durbin-Watson D Statistic 1.827010044

First Order Autocorrelation 0.084117572
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